# RSA Conference 2019

San Francisco | March 4–8 | Moscone Center



SESSION ID: CRYP-T08 Homomorphic Encryption

## New Techniques for Multi-value Input Homomorphic Evaluation and Applications

Malika Izabachène (CEA LIST)

(joint work with S. Carpov and V. Mollimard)

## **Homomorphic Encryption**

- Publicly operate on ciphertexts :
  - Correspondence between operations in the encrypted and in the clear domain.
- Fully Homomorphic encryption
  - Allows to evaluate an arbitrary function over encrypted inputs.
  - In particular, Boolean circuits by composing elementary gate operations :

 $[b_1], [b_2] \rightarrow [b_1 \land b_2], [\neg b_1], [b_1 \lor b_2]$ 

Many applications : Cloud computation, Delegation of computation over sensitive date, Encrypted prediction processing



### **Somewhat HE to FHE**

- Noise growth management using a refreshing technique
- Gentry's Bootstrapping [G09]



Amortized bootstrapping cost per gate is high Focus on reducing this cost



### **FHEW-based Fast Bootstrapping**

- [AP14] : achieve bootstrapping based on LWE with polynomial noise.
- [DM15] : Gate Bootstrapping for binary gate in  $\approx$  1sec. + extension.
- [CGGI16]/[CGGI17] : Gate Boostraping for MUX gate in  $\approx$ 0.1sec.
- + arithmetic function via weighted automata.
- [BR15], [BDF18] : extension to larger gates (6-bits input,6-bits output in  $\approx$ 10sec.).
- [MS18] : improve the amortized bootstrapping cost.
- This work : analysis of the FHEW-based bootstrapping structure.

optimization of the Bootstrapping for larger gates, application to hom. circuits  $\Rightarrow$ 6-bits input, 6-bits output in  $\approx$ 1.57sec.



## FHEW-based Bootstrapping [DM15] ([BR15],[CGGI16],[BDF18], our work)

**Input** : a LWE ciphertext of m, description of f, public parameters= (**BK**, ...). **Output** : a LWE ciphertext of f(m).





### TFHE

- *T* = module of reals modulo 1.
- Secret key :  $s \in \{0,1\}^n$
- Encryption:  $c = (a, b = m + a \cdot s + noise) \in T^{n+1}$  with  $a \in T^n$  random.
- **Decryption :** Round  $\varphi = b a \cdot s$  to the nearest element in message space.

Learning with errors assumption :

(a, b) indistinguishable from random in  $T^{n+1}$ 



### TFHE

- *T* = module of reals modulo 1.
- Secret key :  $s \in \{0,1\}^n$
- Encryption:  $c=(a, b=m_i+a \cdot s + noise) \in T^{n+1}$  with  $a \in T^n$  random.
- **Decryption :** Round  $\varphi = b \cdot a \cdot s$  to the nearest element in message space.

Example: 
$$\mathcal{M} = \{0, \frac{1}{4}, -\frac{1}{4}, \frac{1}{2}\} \mod 1$$
 and  $m = \frac{1}{2} \mod 1$ 

- **1**. Compute  $\varphi = m + noise$
- 2. Choose  $\mathbf{a} \in T^n$  random
- 3. Return the ciphertext (**a**,  $\mathbf{a} \cdot \mathbf{s} + \boldsymbol{\varphi}$ )





## **TFHE Homomorphic Operations**

- TLWE Sample : (n+1) torus scalars.
- TRLWE Sample : k+1 torus polynomials of degree N.

• Operations in T : addition, external multiplication with integer elements.





**#RSAC** 

**RS**AConference2019

#### ist <sup>22 tech</sup>

### 2019

## **TFHE Bootstrapping for evaluating** $f: Z_t \rightarrow Z_t$

#### Step 1 :

- 1. Round c=(a,b) in a discrete space of size 2N.
- 2. Encode f as a polynomial TV<sub>F</sub> modulo X<sup>N</sup>+1 where  $f = F \circ$  round.

9

### Step 2 :

1. Homomorphically rotate the polynomial by b-  $\mathbf{a} \cdot \mathbf{s}$  positions

#### Step 3 :

- 1. Extract the constant term which encrypts f(m).
- 2. Switch the ciphertext back to the original key.





### **Mutli-value Bootstrapping – Test Polynomial Factorization**

**#RSAC** 

**RS**<sup>A</sup>Conference2019

• First-phase test polynomial : divides the torus circle in two parts.



Second-phase test polynomial : builds a linear combination of previous half-circles.

 $TV_F^{(1)} = t'_a X^a + t'_b X^b + t'_c X^c$ 







**Optimized multi-value Bootstrapping** 



### **Multi-output version**

• Evaluate several functions  $F_1, ..., F_q$  on the same input.





## Homomorphic Lookup Table

• A boolean Lookup Table (LUT)  $f: Z_2^r \to Z_2^q$ 

Consider the case q=1

 $\Leftrightarrow \mathbf{F} \circ \varphi \text{ where } \mathbf{F} : Z_{2^r} \to Z_2 \text{ and } \varphi : Z_2^r \to Z_{2^r} \text{ s.t. } \varphi(m_1, ..., m_q) = \sum m_i 2^i.$ 

- Homomorphic evaluation of the function f:
- 1. Encode  $m_j$  as  $\frac{j}{2^{r+1}}$  for  $j \in \mathbb{Z}_{2^r}$ , encode outputs as  $\frac{j}{2^{r+1}}$  for  $j \in \mathbb{Z}_2$  on the half circle.
- 2. Multi-value Bootstrapping with  $TV^0 = \sum X_i$  and  $TV_F^1$  with small norm.



### **RS**<sup>A</sup>Conference2019

**#RSAC** 



KeySwitch

Bootstrap

### **Homomorphic Circuits**

Bootstrap

Bootstrap

Evaluate



. . .

### Implementation for r=6

**Encryption Parameters** (for 128 bits of security) :

- TLWE: n = 803,  $\alpha_{LWE} = 2^{-20} \Rightarrow 6.3kB$
- TRLWE: N =  $2^{14}$  ,  $\alpha_{TRWE} = 2^{-50} \implies 256 kB$
- TRGSW:  $B_g = 2^6$ ,  $l = 2^3$   $\Rightarrow$  2*MB*

Key Parameters (for 128 bits of security):

- LWE key : n = 803, h = 63
- BK < 2*GB* and KS  $\approx$  6*GB* generated in 66sec. both

**Running time :** Multi-value Bootstrapping with 6-bit inputs, 6bits-outputs runs in 1.57 sec

on a single core of an Intel E3-1240 processor running at 3.50GHz.



## **Summary**

- Optimize the multi-value input Bootstrapping
  - Split factorization method for the test polynomial.
  - Large gate homomorphic evaluation.
  - Multi-output evaluation on the same input.

- Application to homomorphic circuit
  - Implementation of 6-to-6 look-up-table in 1.57 sec (vs a  $\approx$  10sec in [BDF18]).
  - Only 0.05 sec. more for additonal 128 outputs on the same 6 input bits.



### Conclusion

• Other applications (hints in the paper):

- Optimization of the circuit bootstrapping of [CGGI17] : invoke the gate bootstrapping main subroutine once rather than p times.
- Activation function in neural network homomorphic evaluation : where f is a threshold function.
- Further Improvements ?
  - Other possible factorization instanciations than splitting TV as  $TV_0$  and  $TV_F^1$ ?
- Implement other applications where evaluating f using the Multi-value Bootstrapping could be efficient.

