
Introduction
De�nitions

Our Construction
Conclusion

Divisible e-cash in the standard model

Benoit Libert1 and Malika Izabachène2

1UCL, Belgium

2UVSQ, France

April, 8th 2011

1 / 19

Introduction
De�nitions

Our Construction
Conclusion

Motivation
Previous work

E-cash real scenario

Bank

Withdraw

user

merchant

Spend

Deposit

2 / 19

Introduction
De�nitions

Our Construction
Conclusion

Motivation
Previous work

E-cash real scenario

Bank

Withdraw

user

merchant

Spend

Deposit

2 / 19

Introduction
De�nitions

Our Construction
Conclusion

Motivation
Previous work

E-cash real scenario

Bank

Withdraw

user

merchant

Spend

Deposit

2 / 19

Introduction
De�nitions

Our Construction
Conclusion

Motivation
Previous work

E-cash real scenario

Bank

Withdraw

user

merchant

Spend

Deposit

2 / 19

Introduction
De�nitions

Our Construction
Conclusion

Motivation
Previous work

O�-line ecash

Digital analogue of regular paper money

3 Reduce the amount of interactions: users pay the merchant
without the involvement of the bank

3 Users' behaviour can be made more transparent to the bank

7 But coins can be easily duplicated

Technical challenge 1: How to detect misbehaviours?

7 Some additional communication cost (to verify validity of a
coin)

Technical challenge 2: How to reduce the

communication complexity?

3 / 19

Introduction
De�nitions

Our Construction
Conclusion

Motivation
Previous work

O�-line ecash

Digital analogue of regular paper money

3 Reduce the amount of interactions: users pay the merchant
without the involvement of the bank

3 Users' behaviour can be made more transparent to the bank

7 But coins can be easily duplicated

Technical challenge 1: How to detect misbehaviours?

7 Some additional communication cost (to verify validity of a
coin)

Technical challenge 2: How to reduce the

communication complexity?

3 / 19

Introduction
De�nitions

Our Construction
Conclusion

Motivation
Previous work

O�-line ecash

Digital analogue of regular paper money

3 Reduce the amount of interactions: users pay the merchant
without the involvement of the bank

3 Users' behaviour can be made more transparent to the bank

7 But coins can be easily duplicated

Technical challenge 1: How to detect misbehaviours?

7 Some additional communication cost (to verify validity of a
coin)

Technical challenge 2: How to reduce the

communication complexity?

3 / 19

Introduction
De�nitions

Our Construction
Conclusion

Motivation
Previous work

O�-line ecash

Digital analogue of regular paper money

3 Reduce the amount of interactions: users pay the merchant
without the involvement of the bank

3 Users' behaviour can be made more transparent to the bank

7 But coins can be easily duplicated

Technical challenge 1: How to detect misbehaviours?

7 Some additional communication cost (to verify validity of a
coin)

Technical challenge 2: How to reduce the

communication complexity?

3 / 19

Introduction
De�nitions

Our Construction
Conclusion

Motivation
Previous work

O�-line ecash

Digital analogue of regular paper money

3 Reduce the amount of interactions: users pay the merchant
without the involvement of the bank

3 Users' behaviour can be made more transparent to the bank

7 But coins can be easily duplicated

Technical challenge 1: How to detect misbehaviours?

7 Some additional communication cost (to verify validity of a
coin)

Technical challenge 2: How to reduce the

communication complexity?

3 / 19

Introduction
De�nitions

Our Construction
Conclusion

Motivation
Previous work

O�-line ecash

Digital analogue of regular paper money

3 Reduce the amount of interactions: users pay the merchant
without the involvement of the bank

3 Users' behaviour can be made more transparent to the bank

7 But coins can be easily duplicated

Technical challenge 1: How to detect misbehaviours?

7 Some additional communication cost (to verify validity of a
coin)

Technical challenge 2: How to reduce the

communication complexity?

3 / 19

Introduction
De�nitions

Our Construction
Conclusion

Motivation
Previous work

Previous ecash system

Compact e-cash system [CHL05, BBCKL09]

Divisible e-cash [Okamoto95, CFT98] (anonymous but not
unlinkable)

Divisible e-cash [NS00] (anonymous and weak unlinkability)

7 requires TTP

7 the merchant and the bank know which part of the coin is
spent

[CG07]: the �rst truly anonymous Divisible e-cash system
 relies on bounded accumulators and the ROM heuristic

This work: Divisible e-cash in the standard model with short
parameters

4 / 19

Introduction
De�nitions

Our Construction
Conclusion

Motivation
Previous work

Outline

1 Introduction

2 De�nitions

3 Our Construction

4 Conclusion

5 / 19

Introduction
De�nitions

Our Construction
Conclusion

Divisible e-cash
Security Model
Building Blocks

The tree-based approach

...
...

...
...

...
...

...
...

Deep

d = 0

d = 1

d = 2
...

d = i− `
...

d = i

Value

2i

2i−1

2i−2

...

2`

...

1

6 / 19

Introduction
De�nitions

Our Construction
Conclusion

Divisible e-cash
Security Model
Building Blocks

Divisibility

Impossible to spend an ancestor or a descendant of a spent coin
without being detected

Coin valued 22 is spent

7 / 19

Introduction
De�nitions

Our Construction
Conclusion

Divisible e-cash
Security Model
Building Blocks

Security Notions

Basic Properties

Anonymity No coalition of bank and merchants can distinguish
real spendings from simulated ones

Balance No coalition of users can spend more coins than they
withdrew

Identi�cation Given two fraudulent coins, B should be able to
identify the double-spender

Exculpabiliy No coalition of merchants and bank can falsely accuse
a user from double-spending

8 / 19

Introduction
De�nitions

Our Construction
Conclusion

Divisible e-cash
Security Model
Building Blocks

Syntactic De�nition

CashSetup(λ): generates params

BankKGen(params): de�nes pkB, skB

UserKGen(params): de�nes pkU , skU

Withdraw (U(pkB, skU , i),B(pkU , skB, i)): allows U to obtain
a divisible coin of value 2i added to DB

Spend(pkB,W, v, pkM, info): allows U to spend a
coin = (∗, π) of value v from wallet W to merchant pkM
VerifyCoin(pkM, pkB, v, coin): veri�es π
Deposit(pkB, pkM, v,DB): allows the bank to detect a
cheating attempt from the U orM. In case of
double-spending, returns the two coins ca and cb

Identify(pkB, ca, cb): given the two double-spent coins,
retrieves the cheating user's public key

9 / 19

Introduction
De�nitions

Our Construction
Conclusion

Divisible e-cash
Security Model
Building Blocks

Syntactic De�nition

CashSetup(λ): generates params

BankKGen(params): de�nes pkB, skB

UserKGen(params): de�nes pkU , skU

Withdraw (U(pkB, skU , i),B(pkU , skB, i)): allows U to obtain
a divisible coin of value 2i added to DB

Spend(pkB,W, v, pkM, info): allows U to spend a
coin = (∗, π) of value v from wallet W to merchant pkM
VerifyCoin(pkM, pkB, v, coin): veri�es π
Deposit(pkB, pkM, v,DB): allows the bank to detect a
cheating attempt from the U orM. In case of
double-spending, returns the two coins ca and cb

Identify(pkB, ca, cb): given the two double-spent coins,
retrieves the cheating user's public key

9 / 19

Introduction
De�nitions

Our Construction
Conclusion

Divisible e-cash
Security Model
Building Blocks

Syntactic De�nition

CashSetup(λ): generates params

BankKGen(params): de�nes pkB, skB

UserKGen(params): de�nes pkU , skU

Withdraw (U(pkB, skU , i),B(pkU , skB, i)): allows U to obtain
a divisible coin of value 2i added to DB

Spend(pkB,W, v, pkM, info): allows U to spend a
coin = (∗, π) of value v from wallet W to merchant pkM
VerifyCoin(pkM, pkB, v, coin): veri�es π
Deposit(pkB, pkM, v,DB): allows the bank to detect a
cheating attempt from the U orM. In case of
double-spending, returns the two coins ca and cb

Identify(pkB, ca, cb): given the two double-spent coins,
retrieves the cheating user's public key

9 / 19

Introduction
De�nitions

Our Construction
Conclusion

Divisible e-cash
Security Model
Building Blocks

Syntactic De�nition

CashSetup(λ): generates params

BankKGen(params): de�nes pkB, skB

UserKGen(params): de�nes pkU , skU

Withdraw (U(pkB, skU , i),B(pkU , skB, i)): allows U to obtain
a divisible coin of value 2i added to DB

Spend(pkB,W, v, pkM, info): allows U to spend a
coin = (∗, π) of value v from wallet W to merchant pkM
VerifyCoin(pkM, pkB, v, coin): veri�es π
Deposit(pkB, pkM, v,DB): allows the bank to detect a
cheating attempt from the U orM. In case of
double-spending, returns the two coins ca and cb

Identify(pkB, ca, cb): given the two double-spent coins,
retrieves the cheating user's public key

9 / 19

Introduction
De�nitions

Our Construction
Conclusion

Divisible e-cash
Security Model
Building Blocks

Syntactic De�nition

CashSetup(λ): generates params

BankKGen(params): de�nes pkB, skB

UserKGen(params): de�nes pkU , skU

Withdraw (U(pkB, skU , i),B(pkU , skB, i)): allows U to obtain
a divisible coin of value 2i added to DB

Spend(pkB,W, v, pkM, info): allows U to spend a
coin = (∗, π) of value v from wallet W to merchant pkM
VerifyCoin(pkM, pkB, v, coin): veri�es π
Deposit(pkB, pkM, v,DB): allows the bank to detect a
cheating attempt from the U orM. In case of
double-spending, returns the two coins ca and cb

Identify(pkB, ca, cb): given the two double-spent coins,
retrieves the cheating user's public key

9 / 19

Introduction
De�nitions

Our Construction
Conclusion

Divisible e-cash
Security Model
Building Blocks

Syntactic De�nition

CashSetup(λ): generates params

BankKGen(params): de�nes pkB, skB

UserKGen(params): de�nes pkU , skU

Withdraw (U(pkB, skU , i),B(pkU , skB, i)): allows U to obtain
a divisible coin of value 2i added to DB

Spend(pkB,W, v, pkM, info): allows U to spend a
coin = (∗, π) of value v from wallet W to merchant pkM

VerifyCoin(pkM, pkB, v, coin): veri�es π
Deposit(pkB, pkM, v,DB): allows the bank to detect a
cheating attempt from the U orM. In case of
double-spending, returns the two coins ca and cb

Identify(pkB, ca, cb): given the two double-spent coins,
retrieves the cheating user's public key

9 / 19

Introduction
De�nitions

Our Construction
Conclusion

Divisible e-cash
Security Model
Building Blocks

Syntactic De�nition

CashSetup(λ): generates params

BankKGen(params): de�nes pkB, skB

UserKGen(params): de�nes pkU , skU

Withdraw (U(pkB, skU , i),B(pkU , skB, i)): allows U to obtain
a divisible coin of value 2i added to DB

Spend(pkB,W, v, pkM, info): allows U to spend a
coin = (∗, π) of value v from wallet W to merchant pkM
VerifyCoin(pkM, pkB, v, coin): veri�es π

Deposit(pkB, pkM, v,DB): allows the bank to detect a
cheating attempt from the U orM. In case of
double-spending, returns the two coins ca and cb

Identify(pkB, ca, cb): given the two double-spent coins,
retrieves the cheating user's public key

9 / 19

Introduction
De�nitions

Our Construction
Conclusion

Divisible e-cash
Security Model
Building Blocks

Syntactic De�nition

CashSetup(λ): generates params

BankKGen(params): de�nes pkB, skB

UserKGen(params): de�nes pkU , skU

Withdraw (U(pkB, skU , i),B(pkU , skB, i)): allows U to obtain
a divisible coin of value 2i added to DB

Spend(pkB,W, v, pkM, info): allows U to spend a
coin = (∗, π) of value v from wallet W to merchant pkM
VerifyCoin(pkM, pkB, v, coin): veri�es π
Deposit(pkB, pkM, v,DB): allows the bank to detect a
cheating attempt from the U orM. In case of
double-spending, returns the two coins ca and cb

Identify(pkB, ca, cb): given the two double-spent coins,
retrieves the cheating user's public key

9 / 19

Introduction
De�nitions

Our Construction
Conclusion

Divisible e-cash
Security Model
Building Blocks

Syntactic De�nition

CashSetup(λ): generates params

BankKGen(params): de�nes pkB, skB

UserKGen(params): de�nes pkU , skU

Withdraw (U(pkB, skU , i),B(pkU , skB, i)): allows U to obtain
a divisible coin of value 2i added to DB

Spend(pkB,W, v, pkM, info): allows U to spend a
coin = (∗, π) of value v from wallet W to merchant pkM
VerifyCoin(pkM, pkB, v, coin): veri�es π
Deposit(pkB, pkM, v,DB): allows the bank to detect a
cheating attempt from the U orM. In case of
double-spending, returns the two coins ca and cb

Identify(pkB, ca, cb): given the two double-spent coins,
retrieves the cheating user's public key

9 / 19

Introduction
De�nitions

Our Construction
Conclusion

Divisible e-cash
Security Model
Building Blocks

Pairings

G1,G2 and GT groups of prime order p

Cryptographic bilinear maps

Consider e : G1 ×G2 7→ GT s.t.

bilinear: e(ga1 , g
b
2) = e(g1, g2)ab

non-degenerated: e(g1, g2) 6= 1

e�ciently computable

10 / 19

Introduction
De�nitions

Our Construction
Conclusion

Divisible e-cash
Security Model
Building Blocks

F-Unforgeable Signature (1/2)

SigSetup(λ): outputs params

SigKG(params, n): outputs pk and sk for block of size n

Sign(sk,m): outputs a signature σ on block m
Verify(pk,m, σ): veri�es whether σ is a valid signature on m

F-Unforgeability

pk
SigSetup()pk,sk

Sig(sk,m)
m

F(m*),s*

11 / 19

Introduction
De�nitions

Our Construction
Conclusion

Divisible e-cash
Security Model
Building Blocks

F-Unforgeable Signature (1/2)

SigSetup(λ): outputs params

SigKG(params, n): outputs pk and sk for block of size n

Sign(sk,m): outputs a signature σ on block m
Verify(pk,m, σ): veri�es whether σ is a valid signature on m

F-Unforgeability

pk
SigSetup()pk,sk

Sig(sk,m)
m

F(m*),s*

11 / 19

Introduction
De�nitions

Our Construction
Conclusion

Divisible e-cash
Security Model
Building Blocks

F-Unforgeable Signature (1/2)

SigSetup(λ): outputs params

SigKG(params, n): outputs pk and sk for block of size n

Sign(sk,m): outputs a signature σ on block m
Verify(pk,m, σ): veri�es whether σ is a valid signature on m

F-Unforgeability

pk
SigSetup()pk,sk

Sig(sk,m)
m

F(m*),s*

11 / 19

Introduction
De�nitions

Our Construction
Conclusion

Divisible e-cash
Security Model
Building Blocks

F-Unforgeable Signature (1/2)

SigSetup(λ): outputs params

SigKG(params, n): outputs pk and sk for block of size n

Sign(sk,m): outputs a signature σ on block m
Verify(pk,m, σ): veri�es whether σ is a valid signature on m

F-Unforgeability

pk
SigSetup()pk,sk

Sig(sk,m)
m

F(m*),s*

11 / 19

Introduction
De�nitions

Our Construction
Conclusion

Divisible e-cash
Security Model
Building Blocks

F-Unforgeable Signature (1/2)

SigSetup(λ): outputs params

SigKG(params, n): outputs pk and sk for block of size n

Sign(sk,m): outputs a signature σ on block m
Verify(pk,m, σ): veri�es whether σ is a valid signature on m

F-Unforgeability

pk
SigSetup()pk,sk

Sig(sk,m)
m

F(m*),s*

11 / 19

Introduction
De�nitions

Our Construction
Conclusion

Divisible e-cash
Security Model
Building Blocks

F-Unforgeable Signature (2/2)

pk
SigSetup()pk,sk

Sig(sk,m)m
F(m*),s*

A outputs (F (m∗), s∗) and wins if:

Verify(pk,m∗, s∗) and s∗ /∈ {Sign(sk,m1), · · · , Sign(sk,mqσ)}

12 / 19

Introduction
De�nitions

Our Construction
Conclusion

Divisible e-cash
Security Model
Building Blocks

Sign and Prove

SigProve(params, pk, σ,m): NI proof of possession of a valid
F-unforgeable signature on m:

Cm + NIZK{σ | Verify(pk,m, σ) = 1}

SigIssue(sk,Cm)↔ SigObtain(pk,Cm,open): allows U to
obtain a signature on a committed vector m

13 / 19

Introduction
De�nitions

Our Construction
Conclusion

Divisible e-cash
Security Model
Building Blocks

Groth Sahai proof system [GS07]

NIZK proofs for pairing product equations (PPE):

n∏
j=1

e(Aj , Yj)
n∏
j=1

e(Xi, Bi)
m∏
i=1

n∏
j=1

e(Xi, Yj)γi,j = tT ,

where ∗ are variables and tT , the Aj 's and Bi's are constants

General strategy: Commit on variables and Prove statements NI

[CG07], [CG08] hardly compatible with Groth Sahai toolbox

Technical challenge: simulate NIZK proofs for PPE

14 / 19

Introduction
De�nitions

Our Construction
Conclusion

Construction Overview (1/4)

BankKGen(params): run SigSetup(λ, 2) to obtain pkB, skB

UserKGen(params): de�ne pkU = e(g, h)skU , with skU
R← Zp

Withdraw(U(),B()):

U B

s′
R← Zp

C′s,πopen−−−−−−→ s
′′

s
′′

←−−−−−−

s = s′ + s
′′ Cs−−−−−−→

W = (s, skU , σ, state)
SigObtain,SigIssue↔ update(∗)

15 / 19

Introduction
De�nitions

Our Construction
Conclusion

Construction Overview (2/4)

Spend anonymously in the tree a coin of value v = 22 in
W = (s, t, skU , σ, state) toM identi�ed by info

No coin is spent One coin is spent

Figure: Binary tree for spending one coin in a sub-wallet of 24 coins

16 / 19

Introduction
De�nitions

Our Construction
Conclusion

Construction Overview (3/4)

1 De�ne path: (x0, x1, x2) s.t. xj+1 = 2xj + bj
Compute S = hs

2 Compute π1 ← SigProve(pk, (s, skU), σ)

3 Commit to the path and prove well-formedness

4 Compute coin's serial number Yj∗ = PRFs(xj) for j = 1, 2

5 Prove everything is done consistently

17 / 19

Introduction
De�nitions

Our Construction
Conclusion

Construction Overview (4/4)

Double-spending Detection:

Add Tj,1 = hdj,1 , Tj,2 = e(Yj , Tj,1), for j = 1, 2 and

Use Y2∗ to check for entry s in DB with i = 2:

if `s = 3 > 2 and if
T ∗3,2 == e(Y1, T

∗
3,1)

if `s = 1 < 2 and if
T2,2 == e(Y ∗2 , T2,1)

if `s = 2 = ` and if Y2 == Y ∗2
· · · U is guilty

Double-spender Identi�cation: similar to [CHL05]
Trickier: add an additional seed t and embedd pkU in each node

18 / 19

Introduction
De�nitions

Our Construction
Conclusion

Conclusion

Improve e�ciency of the Spend algorithm:

Other data structure that enables more e�cient coin
diversi�cation and coin derivation?

Guarantee more e�cient spending to prove statements about
each node in less than |path| proofs?

Improve e�ciency of the Deposit algorithm

19 / 19

