Anonymous and Transparent Gateway-based Authenticated Key-Exchange

Michel Abdalla, Malika Izabachène et David Pointcheval

École Normale Supérieure (Paris)

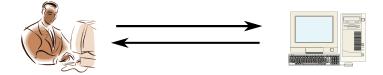
23 juillet 2009

Key Exchange Protocol

A fundamental problem in cryptography: enable secure communication over insecure channels

Key Exchange Protocol

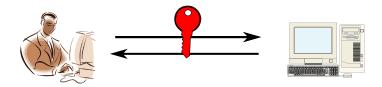
A fundamental problem in cryptography: enable secure communication over insecure channels


A common scenario: Users encrypt and authenticate their messages using a shared secret

(日) (部) (主) (主)

Key Exchange Protocol

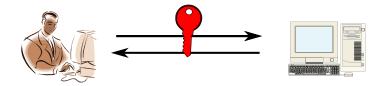
A fundamental problem in cryptography: enable secure communication over insecure channels


A common scenario: Users encrypt and authenticate their messages using a shared secret

Key Exchange Protocol

A fundamental problem in cryptography: enable secure communication over insecure channels

A common scenario: Users encrypt and authenticate their messages using a shared secret



(日)

Key Exchange Protocol

A fundamental problem in cryptography: enable secure communication over insecure channels

A common scenario: Users encrypt and authenticate their messages using a shared secret

How to share a secret key? Key-exchange protocol

イロト イポト イヨト イ

Diffie-Hellman protocol [DH76] (1/2)

 $\mathbb G$ is group where the CDH problem is hard to solve g a public generator of $\mathbb G$

The CDH Problem:

Given g, g^x et g^y , compute g^{xy} (x and y are private)

The DDH problem:

Given g, g^x , g^y et z, decide whether $z \stackrel{?}{=} g^{xy}$ (x are y private)

・ロト ・雪ト ・雪ト ・雪ト

Diffie-Hellman Protocol[DH76] (2/2)

 $\mathbb G$ is a group where the CDH problem is hard to solve g a public generator of $\mathbb G$

 $\begin{array}{ccc} \mathsf{Alice} & \mathsf{Bob} \\ \\ sk_A \xleftarrow{R} \{0, \dots, |\mathbb{G}| - 1\} \\ pk_A = g^{sk_A} & \xrightarrow{pk_A} & sk_B \xleftarrow{R} \{0, \dots, |\mathbb{G}| - 1\} \\ & \xleftarrow{pk_B} & pk_B = g^{sk_B} \end{array}$

The common secret key is $sk = pk_B^{sk_A} = g^{sk_Ask_B} = pk_A^{sk_B}$

Problem: this scheme is not authenticated Both Alice and Bob don't know to whom they are actually speaking

Authenticated Key Exchange (AKE)

Allow two parties to establish a common session key \longrightarrow in an authenticated manner

- Intuitive Goal: provides implicit authentification The session key should be known to the involved parties
- Formal Modelisation: provides Semantic Security of the key The session key should be indistinguishable from a random string

Forward-secrecy: even if a long-term secret is exposed (in the future), the security of the current session key is preserved.

Diffie-Hellman: a man-in-the-middle is possible \longrightarrow no authentification is possible

Authentification Techniques

• Asymmetric Techniques

We assume the existence of a PKI (*public-key infrastructure*). Each user owns a pair (secret key, public key) given to him by a trusted authority

• Symmetric Techniques

Users share a random secret key

• Password-Based Techniques

Users shares a low-entropy secret key Example: about 4-digits pincode, a ssh password

→ Password-Based authentification

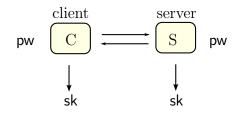
・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Password-Based Key Exchange Protocol

Security Model Notion of Gateway-Based PAKE Strenghtening the Security Model Sketch of the Proof Client Anonymty

Outline

1 Password-Based Key Exchange Protocol


2 Security Model

- 3 Notion of Gateway-Based PAKE
- 4 Strenghtening the Security Model
- 5 Sketch of the Proof
- 6 Client Anonymty

Password-Based Key Exchange Protocol

Security Model Notion of Gateway-Based PAKE Strenghtening the Security Model Sketch of the Proof Client Anonymty

Password-Based AKE

✓ Realistic:

Real life applications actually rely on weak passsords

✓ Convenient to use:

Users do not need to store the secret

✗ But subject to online dictionary attacks: Unvoidable attacks (small size of the dictionnary)

Online Dictionary Attacks

Let D be the set of all possible passwords (*dictionary*) from which are drawn random passwords $\longrightarrow |D|$ is small

Online dictionary attacks:

- ${\scriptstyle \bullet }$ choose a password in D
- interact with the authentification server using pw
- ${\ensuremath{\, \bullet }}$ each attempt can succeed with probability 1/|D|

Protection against these attacks: limit the number of failed attempts

Aim of the password-based authentification: restrict the adversary to these attacks only

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Outline

1 Password-Based Key Exchange Protocol

2 Security Model

3 Notion of Gateway-Based PAKE

4 Strenghtening the Security Model

Sketch of the Proof

6 Client Anonymty

Communication Model

The users can have several instances running concurrently (U^i for a user and S^j for a server in the two-party case)

- Each user will be associated to an oracle instance
- The $i_{\rm th}$ instance of player U will be called U^i

Communication can be contolled by the adversary (\mathcal{A}) :

- ullet Insecure channels: $\mathcal A$ can create, forward or cancel messages
- $\bullet\,$ Flows can be modified or dropped by ${\cal A}\,$
- Message transmission is done via specific queries to the oracles

Adversary's queries (1/3)

• $\mathsf{Execute}(U^i,S^j)$

 $\longrightarrow \mathcal{A}$ obtains the *transcript* of the execution Models passive attacks(*eavesdropping*) on an execution of the protocol between U^i et S^j

• Reveal (U^i)

 $\longrightarrow \mathcal{A}$ obtains the established session key of U^i Models a misuse of the session key by U^i

 $\bullet \; \operatorname{Send}(U^i,m)$

 $\longrightarrow \mathcal{A}$ sends the message m to U^i

Models an active attacks against U^i

• $\mathsf{Test}(U^i)$

 $\longrightarrow \mathcal{A}$ obtains $U^{i'}{\rm s}$ session key if b=0 or a random session key if b=1

Models the semantic security of $U^{i\prime}$'s session key

Adversary's queries (2/2)

Notion of partnering:

- ullet two instances are partnered if they share the same sid
- in the standard model, sid = transcript of the session
- the probability that two instances share the same *sid* is negligible

Freshness:

- a player instance is fresh if it has accepted the session key session and if no Reveal query has been asked to it or its partner
- a Test query is forbidden on a non-fresh instance
- the freshness status allows to remove trivial attacks against semantic security

Notions of Security

Advantage of the adversary:

 $\operatorname{Adv}_{P}^{ake}(t, q_{reveal}, q_{send}, q_{execute}) = \max_{\mathcal{A}}(2\operatorname{Pr}(Succ) - 1)$

- Succ is the event for which A guesses the bit involved in a Test query correctly
- q_{reveal}, q_{send} et q_{exe} are the maximum number of queries A has done to Reveal, Send and Execute oracle.

A PAKE is secure if: $\operatorname{Adv}_P^{ake} \approx q_{send}/|D| + \operatorname{negl}(k)$

 $q_{send}/|D|$: online Dictionary attacks

・ロト ・個ト ・ヨト ・ヨト 三日

Outline

- Password-Based Key Exchange Protocol
- 2 Security Model
- 3 Notion of Gateway-Based PAKE
- 4 Strenghtening the Security Model
- 5 Sketch of the Proof
- 6 Client Anonymty

Extension to the Three party case

Client

 $\mathbf{p}\mathbf{w}$

Server

 $\mathbf{p}\mathbf{w}$

Extension to the Three party case

Cli	ient

 $\mathbf{p}\mathbf{w}$

Gateway

|--|

 $\mathbf{p}\mathbf{w}$

・ロト・(聞・ (用・ (用・ (日・

Extension to the Three party case

・ロト・日本・ キョ・ キョ・ ヨー うくぐ

Extension to the Three party case

Motivation for GPAKE:

- Pratical situation: the authentification task is left to different entites
- Security against off-line Dictionary Attacks is not enough (w.r.t malicious gateway)

Model for GPAKE

Our goal:

the Gateway doesn't learn anything about the password

Model for GPAKE

Our goal:

the Gateway doesn't learn anything about the password

2 Key-privacy w.r.t to Server

Model for GPAKE

Our goal:

the Gateway doesn't learn anything about the password

Key-privacy w.r.t to Server

 Mutual Authentication: the Client and the Gateway are both sure to speak to each other

Model for GPAKE

Our goal:

- the Gateway doesn't learn anything about the password Protection against Dictionary attacks w.r.t the Gateway
- Key-privacy w.r.t to Server

Mutual Authentication: the Client and the Gateway are both sure to speak to each other

Model for GPAKE

Our goal:

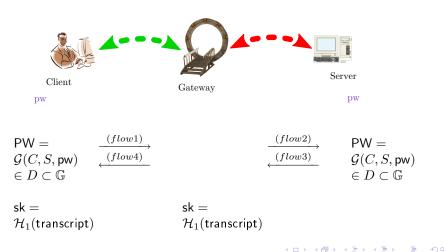
- the Gateway doesn't learn anything about the password Protection against Dictionary attacks w.r.t the Gateway
- Key-privacy w.r.t to Server

Guarantee Semantic Security of the session key

Mutual Authentication: the Client and the Gateway are both sure to speak to each other

Model for GPAKE

Our goal:


- the Gateway doesn't learn anything about the password Protection against Dictionary attacks w.r.t the Gateway
- 2 Key-privacy w.r.t to Server

Guarantee Semantic Security of the session key

Mutual Authentication: the Client and the Gateway are both sure to speak to each other

Both compute the real session key with its actual partner

Gateway-Based PAKE [ACFP05]

Outline

- Password-Based Key Exchange Protocol
- 2 Security Model
- 3 Notion of Gateway-Based PAKE
- 4 Strenghtening the Security Model
- 5 Sketch of the Proof
- 6 Client Anonymty

Our contributions for the model

- A Unified Security Model: consider semantic security and unilateral (resp. mutual) authentification simultaneously
- Stronger Notion of Corruption: even if participants are corrupted (leakage of a long-term scecret), the session can remain *fresh*

 \longrightarrow this allows to consider a stronger notion of perfect forward-secrecy

• Client Anonymity w.r.t the Server: The Server doesn't know which Client is currently connected

 \longrightarrow strengten the Transparency property

(□) (@) (E) (E) =

More Fresh sessions

Idea: specify the identity of the sender of a Send query

A session is fresh if

- instances involved have accepted and nobody is corrupted and no Reveal query has been asked (as before)
- 2 all (or some of) messages are oracle generated

 \longrightarrow even if a participant is corrupted, the session could be maintened as fresh

<ロト < 四ト < 三ト < 三ト = 三三

Tools for GPAKE

A Diffie-Hellman-Based Assumption: PCDDH Password chosen basis Diffie-Hellman Assumption

2 Round 2: choose
$$s_0, s_1 \stackrel{\mathcal{R}}{\leftarrow} \mathbb{Z}_q$$
 and $\mathsf{PW} \in D$
choose $b \in \{0, 1\}$
set $X' \leftarrow (X/\mathsf{PW})^{s_b}$ and $Y \leftarrow g^{s_1}$

Interactive assumption but ...

quite reasonable assuming DDH holds (if pw is drawn uniformly at random in D)

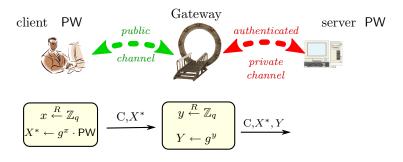
Gateway-Based PAKE

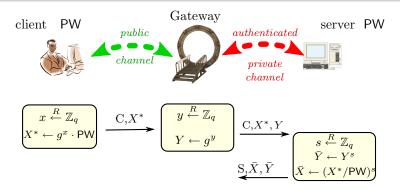
 $\operatorname{client} \ \mathsf{PW}$

 $\operatorname{server}\ \mathsf{PW}$

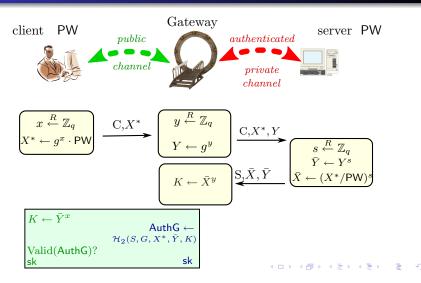
・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ・ ク へ ぐ

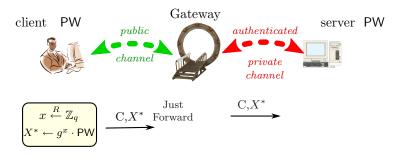
Gateway-Based PAKE


Gateway-Based PAKE

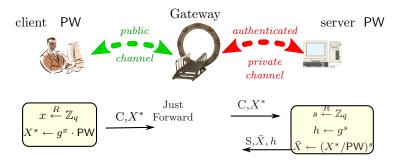

$$\begin{array}{c} x \stackrel{R}{\leftarrow} \mathbb{Z}_q \\ X^* \leftarrow g^x \cdot \mathsf{PW} \end{array} \xrightarrow{\mathbf{C}, X^*} \end{array}$$

◆□ ▶ < 畳 ▶ < 置 ▶ < 置 ▶ < 置 > の Q (C) 37

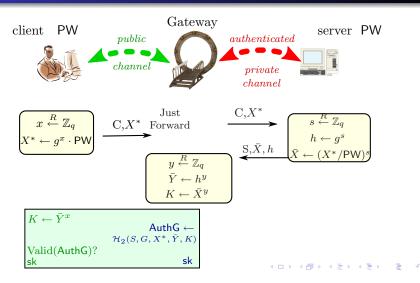

Gateway-Based PAKE


Gateway-Based PAKE

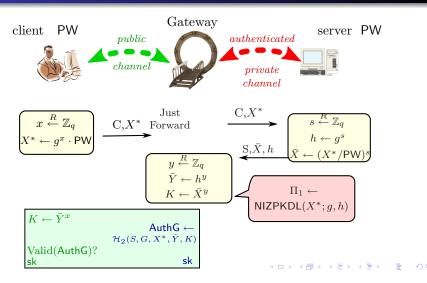
Gateway-Based PAKE



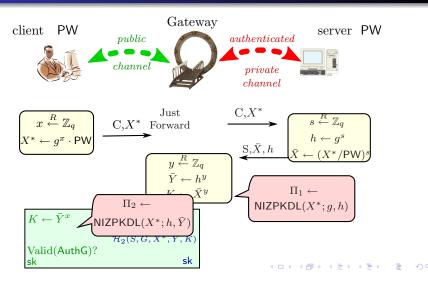
Anonymous Gateway-Based PAKE


<ロト < 昂ト < 臣ト < 臣ト 三 のへで 41

Anonymous Gateway-Based PAKE



42


Anonymous Gateway-Based PAKE

Anonymous Gateway-Based PAKE

Anonymous Gateway-Based PAKE

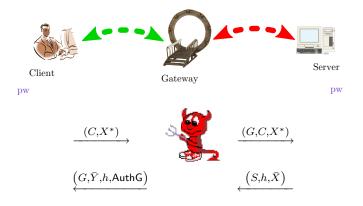
Outline

- Password-Based Key Exchange Protocol
- 2 Security Model
- 3 Notion of Gateway-Based PAKE
- 4 Strenghtening the Security Model
- 5 Sketch of the Proof
- 6 Client Anonymty

Key Point of the Proof

General Idea: simulate oracle s.t. $\mathcal{A}\xspace's$ view is negligibly close to the one in the real game

- Nobody is corrupted and A interacts passively (OG or Execute) with the protocol
 → The semantic security relies on the CDH Problem
- If the Gateway is corrupted ?
- If the Client is corrupted ?
- Everybody is corrupted but the all messages are OG?


Trick in the proof (1/4)

More intricate case: the Gateway is corrupted

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Trick in the proof (1/4)

More intricate case: the Gateway is corrupted

э

(a)

Trick in the proof (1/4)

More intricate case: the Gateway is corrupted

① \mathcal{A} asks the help of the server

But the server oracle still uses PW \longrightarrow make sure that Dictionary attacks are not possible

④ A plays on the behalf of the server and the gateway.
 reject non-oracle generated authenticators
 → compute the probability of bad rejection

Trick in the proof (2/4)

Case 1: \mathcal{A} plays wih a server oracle

 \longrightarrow use the PCDDH assumption to reduce \mathcal{A} 's task in deciding whether (g, h, \bar{X}) is real or random

if ${\mathcal A}$ do so, we have an adversary against the PCDDH Assumption How?

prove it by an hybrid argument on the number of q_{send} queries to the Server

<ロト < 四ト < 三ト < 三ト = 三三

Trick in the proof (3/4)

Case 2: \mathcal{A} plays on the behalf of the server and the gateway

we assume as symmetric authentication means b.t G and S

 \longrightarrow reject non oracle generated authenticators

can we detect it?

YES

Probability of Bad rejection?

Negligible if the client is not corrupted

Trick in the proof (4/4)

- Note that $(g,X^*/\mathrm{PW},h,\bar{X})$ is a CDH-tuple for at most one PW
- Goal of the simulation: Not use the password anymore

$$\longrightarrow$$
 Goal: show that $P_1 = rac{qsend}{N}$

イロト 不得 とくほと くほとう

Outline

- Password-Based Key Exchange Protocol
- 2 Security Model
- 3 Notion of Gateway-Based PAKE
- 4 Strenghtening the Security Model
- 5 Sketch of the Proof
- 6 Client Anonymty

Adding Client Anonymity

The client may want to obtain a session key without letting the server know who he is

- \longrightarrow make the Client connections anonymous and unlikable
- A Solution
 - The Server is viewed as a dynamic database
 - For each connection, construct all possible answers for the Client
 - The Gateway gets the one for the Client

Adding Client Anonymity/Interface with a PIR

Feature of our GPAKE variant: can be efficiently interfaced with any *Private Information Retrieval*

Adding Client Anonymity/Interface with a PIR

Adding Client Anonymity/Interface with a PIR

PIR problematic: allow a user to retrieve an item in a database (of size n) without letting know the server which index is asked

Adding Client Anonymity/Interface with a PIR

PIR problematic: allow a user to retrieve an item in a database (of size n) without letting know the server which index is asked requirement: the amount of communication must be less then n.

Adding Client Anonymity/Interface with a PIR

PIR problematic: allow a user to retrieve an item in a database (of size n) without letting know the server which index is asked requirement: the amount of communication must be less then n.

Two approaches:

Adding Client Anonymity/Interface with a PIR

PIR problematic: allow a user to retrieve an item in a database (of size n) without letting know the server which index is asked requirement: the amount of communication must be less then n.

Two approaches:

• Information Theoretical: sub-linear communication is not possible for one database [CGKS95].

Necessity of duplication of databases that do not collude

(□) (圖) (E) (E) (E)

Adding Client Anonymity/

PIR problematic: allow a user to retrieve an item in a database (of size n) without letting know the server which index is asked requirement: the amount of communication must be less then n.

Two approaches:

• Information Theoretical: sub-linear communication is not possible for one database [CGKS95].

Necessity of duplication of databases that do not collude

• Computational: one database is possible [KO97] Counterpart: more computational cost

Adding Client Anonymity/

PIR problematic: allow a user to retrieve an item in a database (of size n) without letting know the server which index is asked requirement: the amount of communication must be less then n.

Two approaches:

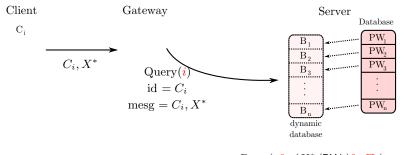
• Information Theoretical: sub-linear communication is not possible for one database [CGKS95].

Necessity of duplication of databases that do not collude

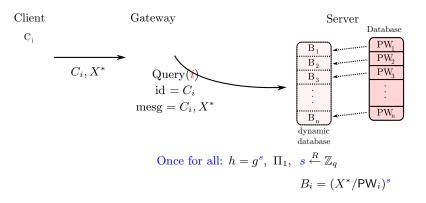
• Computational: one database is possible [KO97] Counterpart: more computational cost

Symmetrical PIR: Prevents user from learning more than one item of the database during a session [KO97,GIKM98]

Gateway


Adding Client Anonymity

 C_i, X^*


Adding Client Anonymity

$$B_{i} = (g^{s_{i}}, (X^{*}/\mathsf{PW}_{i})^{s_{i}}, \Pi_{i})$$
$$s_{i} \xleftarrow{R} \mathbb{Z}_{q}$$

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ うへぐ

Adding Client Anonymity

- improve computational cost
- improve storage space

3

イロト イポト イヨト イヨト

Conclusion

- Formalisation of a strenghten model for PAKE protocols considering a broader notion of Freshness
- Apply it to GPAKE But still makes sense for the two-party case
 → lead to a (partial) mechanization of the proof (we only consider weak and static corruption)
- Suggest Client Anonymity

Open Question:

- Deal with Dynamic corruption
- Consider other distribution for the Dictionary than a uniform one