
Identity-Based Encryption from Lattices Using
Approximate Trapdoors

Malika Izabachène1, Lucas Prabel2, and Adeline Roux-Langlois3

1 Independent Scholar
2 Univ Rennes, CNRS, IRISA, Rennes, France

3 Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France

Abstract. Practical implementations of advanced lattice-based construc-
tions have received much attention since the first practical scheme in-
stantiated over NTRU lattices, proposed by Prest et al (Asiacrypt 2014).
They are using powerful lattice-based building blocks which allow to
build Gaussian preimage sampling and trapdoor generation efficiently. In
this paper, we propose two different constructions and implementations
of identity-based encryption schemes (IBE) using approximate variants
of "gadget-based" trapdoors introduced by Chen et al. (Asiacrypt 2019).
Both constructions are proven secure.
Our first IBE scheme is an adaptation of the Bert et al. scheme (PQCrypto
2021) to the approximate setting, relying on the Module-LWE hardness
assumption and making use of the Micciancio-Peikert paradigm with ap-
proximate trapdoors. The second IBE relies on a variant of the NTRU
hardness assumption.
We provide several timings and a comparison analysis to explain our re-
sults. The two different instantiations give interesting trade-offs in terms
of security and efficiency and both benefit from the use of approximate
trapdoors. Though our second IBE construction is less efficient than
other NTRU-based IBEs, we believe our work provides useful insights
into efficient advanced lattice-based constructions.

Keywords: Lattice-based cryptography · approximate trapdoors · Gaus-
sian preimage sampling · module lattices · IBE

1 Introduction

Identity-based encryption (IBE) is an advanced public key encryption scheme in
which an identity, such as a username, email address, or social security number,
acts as the public key. In identity-based encryption, the sender encrypts a mes-
sage with the unique identity of the recipient, and the recipient then decrypts
the ciphertext with their private key to obtain the original message. In this way,
one party can send an encrypted message to any other party without requesting
the recipient’s public key beforehand. The pair "identity" and "associated secret
key" acts as a classical public key and secret key pair in a classical public key
encryption scheme.

The idea was to eliminate the need for a public certificate across email sys-
tems. These schemes allowed secure communication without exchanging user
keys. In [Sha84] Shamir presented a solution for an identity-based signature
scheme but the first IBE constructions appeared only in 2001 in [BF01; Coc01]
and were based respectively on bilinear maps and quadratic residue-based as-
sumptions. However, these schemes were vulnerable to quantum attacks due to
Shor’s algorithm.

Lattice-based IBE constructions. In [GPV08], Gentry, Peikert and Vaikun-
tanathan described the first lattice-based IBE, relying on the Dual-Regev encryp-
tion scheme. An important contribution of their work was a sampling algorithm
(known as GPV sampling) which showed how to use a short basis as a trapdoor
for generating short lattice vectors. This sampler was then used to construct
a lattice-based IBE scheme, proven adaptively secure against chosen-plaintext
attack in the random oracle model as defined in [BF01; Coc01]. However, the
master public key and user secret keys had large sizes in O(n2) bits. Later on,
a construction of a Hierarchical IBE (HIBE) scheme in the standard model was
proposed in [CHK+10] based on a new mechanism for users’ keys delegation.
This IBE scheme was proven secure in the selective model where the adversary
needs to target an identity beforehand. In 2010, Agrawal et al. [ABB10] proposed
a Learning With Errors (LWE)-based IBE scheme with a trapdoor structure and
with performance comparable to the GPV scheme. Their construction viewed
an identity as a sequence of bits and then assigned a matrix to each bit. It used
a sampling algorithm to obtain a basis with low Gram-Schmidt norm for the
master secret key and formed a lattice family with two associated trapdoors to
generate short vectors; one for all lattices in the family and the other one for all
but one.

The first Ring-LWE based IBE scheme has been proposed by Ducas, Lyuba-
shevsky and Prest [DLP14] (DLP-IBE), which is still considered the most ef-
ficient scheme to date due to smaller key sizes. The use of the ring variant
increased efficiency by reducing the public key size and ciphertext size to O(n).
The security of their scheme holds in the random oracle model and is related to
the NTRU hardness assumption. An efficient C implementation of the DLP-IBE
scheme and a detailed performance analysis was provided in [MSO17]. In 2017,
Campbell and Grover introduced a HIBE scheme, called LATTE, which can be
viewed as a combination of the DLP scheme with the delegation mechanism
from [CHK+10]. An optimized implementation and refined analysis of LATTE,
has recently been proposed in [ZMS+21].

The work from [BFRS18] constructed an IBE using the notion of gadget-
based trapdoors in the ring setting, introduced by [MP12]. Such trapdoors can
be seen as linear transformations mapping hard instances of cryptographic prob-
lems on some lattices to easy instances on a lattice defined by a public "gadget
matrix". The IBE from [BFRS18] also made use of the efficient Gaussian preim-
age sampling algorithms from [GM18] to propose an implementation of their
scheme. In [BEP+21], this IBE and its associated sampling algorithms were

2

adapted to the module setting and instantiated. The use of module lattices of
dimension nd, where d is the rank module, led to a more flexible choice of param-
eters. In [ZY22], the authors proposed new efficient gadget sampling algorithms
which didn’t need floating-point arithmetic, and as fast as the original [GM18]
sampler.

All those constructions generally make use of dedicated trapdoors, needed
by the authority to generate the secret key of a user. In that case, building the
trapdoor and sampling particular short vectors are quite costly, and represent
the main bottleneck in the efficiency of such schemes. More recently, [CGM19]
introduced approximate trapdoors to improve the efficiency of schemes built
from lattice trapdoors while keeping the same concrete security. [GL20] showed
that those approximate trapdoors, relying on the [MP12] framework, exist on a
family of NTRU lattices. Our work explores the application of those approximate
trapdoors, and in particular of this family of NTRU lattices, to more advanced
schemes where the generation of private keys in a multi-user setting is needed.

Our contributions. Our main contribution is to provide and implement two
lattice-based IBE schemes (IBE1 and IBE2), which make use of families of
gadget-based approximate trapdoors. Our two constructions rely on the LWE
problem over modules (Module-LWE) and the inhomogeneous NTRU problem
(iNTRU) respectively. We investigate how to instantiate and parametrize the ap-
proximate trapdoor preimage sampling over these two families of trapdoors in a
way to obtain provable and efficient quantum-safe IBE schemes. The IBE1 con-
struction is an adaptation of the identity-based encryption scheme from [ABB10;
BFRS18] to the module setting, using approximate trapdoors. The IBE2 con-
struction follows the same blueprint as the DLP scheme except that it makes
use of iNTRU gadget-based approximate trapdoors. As in previous IBE construc-
tions, encryption is based on the Dual-Regev encryption scheme. We provide a
complete public and open-source C implementation4 with performance bench-
marking. The implementation is modular and makes it easy to change the build-
ing blocks of our algorithms according to the desired properties that we want to
get.

Our work explores the use of approximate trapdoors for the construction of
IBE schemes and the potential practical insights we can gain from it. We first
adapted the construction of [BEP+21] using approximate trapdoors in our IBE1.
The error induced by the approximate setting requires changes at several levels,
either for the choice of encoding or for the sampling algorithms. As expected,
we obtain better timings for all four algorithms composing our IBE by using
approximate trapdoors rather than exact ones.

The second scheme IBE2 makes use of approximate trapdoors relying on a
variant of NTRU rather than Module-LWE. Our approach was motivated by the
fact that other efficient IBEs, such as DLP and Latte, used the NTRU hardness
assumption. However, unlike us, these last two schemes used the GPV paradigm

4 https://github.com/lucasprabel/approx_lattice

3

to generate trapdoors, which significantly changes the way their schemes are
constructed compared to ours.

More details on our implementation choices. Our IBE1 proof relies on a sta-
tistical trapdoor instantiation. Although the size of the parameters increases
consequently, the use of approximate trapdoors allowed us to mitigate this loss
in efficiency induced by the use of a statistical instantiation. In order to ensure
decryption correctness, we also need to use a large modulus (see Section 4.1).
This leads us to perform calculations carefully on 64-bit integers, so as not to
affect our scheme efficiency. The IBE1 also makes use of a small-norm encoding,
instead of the low-degree encoding used in [BEP+21] to ensure that the noise is
still not too large in order to decrypt. The encoding we use sets constraints on the
structure of the ring Rq which is not compatible with the NTT for polynomial
multiplications. Instead, we use a "partial NTT" based on [LS18] results, which
reduces multiplication in Rq to multiplication in smaller rings. We also have op-
timized the underlying CRT representation algorithm compared to [BEP+21].
Finally, the sampling algorithms have been adapted to the approximate setting.
Table 2 shows some applicable parameter sets together with their concrete bit
security using the LWE estimator from [APS15] with BKZ as a reduction cost
model. All the algorithms comprising the IBE1 over module lattices are more
efficient than their exact counterpart at the same security level. This improve-
ment concerns in particular Setup and Extract which are optimized by a factor
≈ 1.5. We give more details in Section 4.2.

The IBE2 scheme is instantiated using gadget-based trapdoors on a family of
NTRU lattices. Table 4 provides a set of applicable parameter sets together with
their concrete bit security. The computational trapdoors instantiation lowers the
bounds on parameters required for the correctness compared to the IBE1 scheme,
which allows the use of smaller moduli. For the IBE2 construction, an identity is
encoded as H(id) with H having special properties so that we are able to respond
to private key queries except for the target identity chosen by the adversary.

Table 1: Timings comparison in ms of the different operations of the IBE2 scheme
in this paper and in Latte [ZMS+21] for different sets of parameters.

Scheme (n, ⌈log2(q)⌉) Security level Setup Extract Encrypt Decrypt

[ZMS+21] (1024, 24) 128 102 0.82 0.05 0.06
[ZMS+21] (2048, 25) 256 292 2.62 0.10 0.13

This paper (1024, 25) 159 3.32 5.92 1.10 0.07
This paper (2048, 25) 293 10.21 12.79 2.96 0.16

In Table 1, we provide timings comparison with the [ZMS+21] IBE scheme.
A more complete and detailed comparison is given in Section 5.2 between our
IBE2 scheme and the [DLP14] and [ZMS+21] IBE schemes which also rely on the
NTRU assumption. The use of approximate trapdoors and of the iNTRU assump-
tion allows to obtain better timings for the Setup algorithm and for the Extract

4

algorithm for some sets of parameters. Unfortunately, we obtain an overhead
for encryption which essentially comes from the Gaussian sampling phase. We
can save a factor 3.5 using binomial samples as in [DLP14] and [ZMS+21] but
there is still an overhead due to the extra number of samples we need. We make
n(2+m) calls to the integer Gaussian sampler while encryption in [DLP14] and
[ZMS+21] makes use of 3n binomial sampling calls, where n is the dimension
of the underlying polynomial ring and m is the size of one of the vector used
in encryption. As an example, we obtain a timing of 0.87ms for one encryption
against 0.13 for [ZMS+21] for a security level of 128 bits.

Organization of the paper. The paper is structured as follows: Section 2
reviews the necessary linear algebra and lattice backgrounds. The Section also
presents the notions of approximate trapdoor. Then, Section 4 and Section 5
contain a detailed description of the two IBEs, based on the Module-LWE hard-
ness assumption and based on a variant of the NTRU assumption respectively.
Both Sections provide a security analysis and detailed performance results to-
gether with a comparison of their respective analogue in terms of lattice-based
building blocks and assumptions.

2 Preliminaries

Notations. Throughout the paper, the vectors are written in lowercase bold
letters (e.g. v) and matrices in uppercase bold letters (e.g. A). We refer to their
entries with a subscript index vi, Ai,j . We denote ∥·∥ and ∥·∥∞ the euclidean
norm and the infinity norm respectively. The norm of a vector over Zq is the
norm of the corresponding vector over Z obtained by choosing its entries in the
set {−⌊q/2⌋, . . . , ⌊q/2⌋}. The norm of a polynomial a =

∑n−1
i=0 aiX

i is the norm
of the coefficients vector (a0, . . . , an−1). Finally, the norm of a matrix is the
maximum norm of its column vectors. If x is sampled from a distribution D, we
write x←D. We denote U(S) the uniform distribution over a finite set S.

We say that a function f is negligible when f(n) = o(n−c) for all c > 0
as n → ∞. An event is said to happen with overwhelming probability if its
probability of not happening is negligible. Two distributions D0 and D1 over the
same countable domain Ω are said to be statistically indistinguishable if their
statistical distance ∆(D0, D1) = 1

2

∑
ω∈Ω |D0(ω) − D1(ω)| is negligible. Two

distributions are said to be computationally indistinguishable if no probabilistic
polynomial time algorithm can distinguish them with non-negligible advantage.

2.1 Lattices background and discrete Gaussian distributions.

Lattices. A lattice Λ in Rm is the set {
∑k

i=1 λibi, λi ∈ Z } of all integer linear
combinations of some linearly independent vectors B = { b1, . . . , bk } ⊂ Rm.
We call k the rank of the lattice and m its dimension. When k = m, the lattice
is said to be full-rank.

5

Given A ∈ Zn×m
q and u ∈ Zn

q , we define the following m-dimensional
q-ary lattice Λ⊥

q (A) = { x ∈ Zm | Ax = 0 mod q } , and its coset Λu
q (A) =

{ x ∈ Zm | Ax = u mod q } .
Module lattices are particular lattices that have a polynomial structure.

We denote d the module rank of those lattices. When d = 1, module lattices
are in fact ideal lattices. We consider the ones that are based on the rings
R = Z[X]/⟨Xn + 1⟩ and Rq = Zq[X]/⟨Xn + 1⟩, where n is a power of two and
q is prime. They are sublattices of the full lattice Rm, which is isomorphic to
the integer lattice Znm.

Gaussian distributions. We recall that a symmetric matrix M ∈ Rn×n is positive
definite (resp. positive semidefinite) if xTMx > 0 (resp. xTMx ≥ 0) for all
nonzero x ∈ Rn. In this case we write M ≻ 0 (resp. M ⪰ 0). We say that
M ⪰N when M −N ⪰ 0, and write M ⪰ η instead of M ⪰ ηIn when η ≥ 0
is a real. The spherical continuous Gaussian function of center c ∈ Rn and
parameter σ is defined on Rn by ρc,σ(x) = exp(−π∥x−c∥2

σ2). For a positive definite
matrix Σ ∈ Rn×n, we also define the (skewed) Gaussian function ρc,

√
Σ(x) =

exp(−π(x − c)TΣ−1(x − c)). Then, for a full-rank lattice Λ ⊂ Zn, we denote
DΛ,σ,c (respectively DΛ,

√
Σ,c) the spherical (resp. ellipsoid) discrete Gaussian

distribution of center c ∈ Rn and parameter σ > 0, associated to the density
ρc,σ (resp. ρc,√Σ).

Smoothing parameter. The smoothing parameter of a lattice Λ, denoted ηε(Λ),
was first introduced in [MR07]. Lemma 1 gives an upper bound on it.

Lemma 1 ([GPV08, Lemma 3.1]). Let Λ ⊂ Rn be a lattice with basis B,
and B̃ the Gram-Schmidt orthogonalization of B. Then, for any ε > 0, we have
ηε(Λ) ≤ ∥B̃∥ ·

√
ln(2n(1 + 1/ε))/π.

Gaussian tailcut. We will use the following result to bound the euclidean norm
of vectors that follow a discrete Gaussian distribution.

Lemma 2 ([Lyu12, Lemma 4.4]). For any integer n ≥ 1 and reals σ > 0,
t > 1, Pr [∥x∥ > tσ

√
n | x← DZn,σ] < tne

n
2 (1−t2).

We call t a tailcut of the discrete Gaussian of parameter σ when a vector x
sampled from DZn,σ verifies the inequality ∥x∥ ≤ tσ

√
n on its euclidean norm

with overwhelming probability.

2.2 Cryptographic problems on lattices

We work on the rings R = Z[X]/⟨Xn + 1⟩ and Rq = Zq[X]/⟨Xn + 1⟩, where n
is a power of two and q a prime modulus. Let us now define the hard problems on
which our constructions rely. In most practical lattice-based schemes, security is
based on structured variants of LWE rather than on LWE itself. In the Module-SIS
and Module-LWE variants, the parameter d is the rank of the module, and nd

6

is the dimension of the corresponding module lattice. The hardness of those
problems is proven by worst-case to average-case reductions from hard problems
on module lattices (see [LS15]).

Definition 1 (Module-SISn,d,m,q,β). Given a uniform A ∈ Rd×m
q , find a vector

x ∈ Rm such that Ax = 0 mod q, and 0 < ∥x∥ ≤ β.

Definition 2 (Decision Module-LWEn,d,q,σ). Given a uniform A ∈ Rd×m
q and

the vector bT = sTA+eT mod q ∈ Rm
q , where s← U(Rd

q) and e← DRm,σ, dis-
tinguish the distribution of (A, b) from the uniform distribution over Rd×m

q × Rm
q .

As stated in [BJR+23], the Module-LWE problem remains hard when the
short secret s is sampled from the Gaussian distribution DRd,σ.

Note that Module-LWEn,d,q,σ with rank d = 1 corresponds to the ring version
of LWE, which will be denoted Ring-LWEn,q,σ. We define G = Id ⊗ gT and its
associated lattice named the module G-lattice, for which the Module-SIS problem
is easy.

To build our second IBE, we use gadget-based trapdoors whose pseudoran-
domness is based on the inhomogeneous NTRU problem (iNTRU), a variant of
NTRU introduced in [GGH+19].

Definition 3 (iNTRUq,χ). Let k, q be integers and χ a distribution over R. The
input of the iNTRUq,χ problem is a vector a ∈ Rk

q which is either taken uniform
in Rk

q or either set as a = r−1(g+e) where (r, e) is drawn from χk+1. The goal
is to decide which is the case.

In their paper, the authors from [GGH+19] showed a reduction of a matrix-
variant of iNTRU called MiNTRU from the non-standard Ring-LWE with a trap-
door oracle access problem (more details are given in [GGH+19, Section 4.3]).
The reduction can be adapted to the iNTRU problem as well.

2.3 Encoding identities with full-rank differences

We use the notion of full-rank differences encoding (FRD) in our first scheme,
with different properties that the ones used in [ABB10].

Definition 4 ([BEP+21]). An encoding with full-rank differences from the set
M to a ring R is a map H :M−→ R such that:

– for any m ∈M, H(m) is invertible,
– for any m1,m2 ∈M such that m1 ̸= m2, H(m1)−H(m2) is invertible,
– H is computable in polynomial time.

As shown in [BEP+21], we construct an FRD encoding in the module setting
(i.e. over Rd×d

q), by first constructing one in the ring setting (i.e. over Rq). The
encodings used in our IBE scheme impose a structure on the ring Rq which
is not compatible with the Number Theoretic Transform (NTT). To speed up
polynomial multiplications and to mitigate the loss of performance due to the
inability of using the NTT, we use ideas from [LS18]. This method can be thought
of as a "partial NTT". It is based on the following result.

7

Lemma 3 ([LS18, Corollary 1.2]). Let n ≥ r > 1 be powers of 2, and q a
prime such that q ≡ 2r + 1 (mod 4r). Then the cyclotomic polynomial Xn + 1
factors in Zq[X] as Xn + 1 =

∏r
i=1

(
Xn/r − si

)
, for some distinct si ∈ Z∗

q such
that the

(
Xn/r − si

)
are irreducible in Zq[X]. Moreover, if y ∈ Zq[X]/(Xn + 1)

satisfies 0 < ∥y∥∞ < q1/r√
r

, then y has an inverse in Zq[X]/(Xn + 1).

This lemma was used in [BEP+21] to build a "low-degree" FRD (the iden-
tities were encoded as polynomials of low-degree). In our case, we construct a
"small-norm" FRD, encoding polynomials with ℓ∞-norm smaller than q1/r

2
√
r
. We

make use of the "small-norm" FRD described in Proposition 1 rather than "low-
degree" FRD encoding so that the correctness of the decryption algorithm still
holds when using approximate trapdoors, because they introduce an additional
error term that must be bounded.

Proposition 1. Let n ≥ r > 1 be powers of 2, q a prime such that q ≡ 2r +

1 (mod 4r) and 1 ≤ D ≤ q1/r

2
√
r

an integer. We define M = {−D, . . . ,D}n \
{(0, . . . , 0)} the set of identities. Then the following map HM :M−→ Rq, such
that HM (m0, . . . ,mn−1) =

∑n−1
i=0 miX

i is an FRD encoding.

Proof. We have ∥HM (m)∥∞ ≤ D < q1/r

2
√
r

for all m because of the choice of M.
So according to Lemma 3, HM (m) is invertible. For all m1,m2 ∈ M, we also
have ∥HM (m1)−HM (m2)∥∞ ≤ 2D < q1/r√

r
so HM (m1)−HM (m2) is invertible.

Finally, HM is an FRD encoding. ⊓⊔

FRD on modules. As explained in [BEP+21], FRD encoding in the module
setting can be built using an existing FRD encoding in the ring setting HM :
M −→ Rq by constructing HM (m) · Id ∈ Rd×d

q for m ∈ M and Id ∈ Rd×d
q is

the identity matrix.

3 Trapdoors on lattices

The two IBE constructions make use of efficient trapdoors, called gadget-trapdoors,
introduced in [MP12]. Such trapdoors were generalized to ideal lattices in [LCC14]
and to module lattices in [BEP+21]. An efficient instantiation of the sampling al-
gorithms was given in [GM18]. All those results allow us to efficiently instantiate
trapdoor generation and sampling algorithms. Having introduced the G-lattice
in the previous Section, we can now define the associated G-trapdoors.

Definition 5. A G-trapdoor for a matrix A ∈ Rd×m
q is a matrix R ∈ R(m−dk)×dk

such that

A

 R

Idk

 = HG

for some invertible H ∈ Rd×d
q , called the tag of A.

8

The knowledge of the trapdoor R allows one to compute small vectors on
any coset of a given lattice, by sampling on the G-lattice first, and then by using
R to map the sample to a small vector in the given lattice.

3.1 Approximate trapdoors for module lattices.

As shown in [CGM19], the gadget trapdoor proposed by Micciancio and Peikert
can be modified to an approximate trapdoor, in a way that further reduces the
sizes of the public matrix, the trapdoor and the preimage.

Definition 6 (AISISn,d,m,q,α,β). For any n, d,m, q ∈ N and α, β ∈ R, the ap-
proximate inhomogeneous short integer solution problem AISISn,d,m,q,α,β is de-
fined as follows: given A ∈ Rd×m

q ,y ∈ Rd
q , find a vector x ∈ Rm such that

||x|| ≤ β and such that there is a vector z ∈ Rd satisfying: ||z|| ≤ α and
Ax = y + z mod q.

Definition 7 (Approximate Trapdoor). A string τ is called an (α, β)-approxi
mate trapdoor for a matrix A ∈ Rd×m

q if there is a probabilistic polynomial time
algorithm that given τ,A and any y ∈ Rd

q , outputs a non-zero vector x ∈ Rm

such that ||x|| ≤ β and there is a vector z ∈ Rd satisfying ||z|| ≤ α and
Ax = y + z mod q.

In practice, we generate approximate trapdoors by dropping ℓ entries corre-
sponding to the small powers of b from the gadget matrix G to get the following
matrix: F = Id ⊗ fT = Id ⊗

[
bℓ bℓ+1 bℓ+2 · · · bk−1

]
∈ Rd×d(k−ℓ).

3.2 Module-LWE Approximate trapdoors.

In [CGM19], the authors described the approximate trapdoor generation and the
approximate preimage sampling algorithms, adapted from [MP12] by making use
of the approximate gadget matrix F instead of G. Its trapdoor generation and
trapdoor preimage sampling algorithms over modules are recalled in Figure 1
and the result of the approximate sampling is stated in Theorem 1.

Theorem 1 ([CGM19, Theorem 4.1]). There exists probabilistic, polyno-
mial time algorithms ApproxTrapGen1(·) and ApproxSamplePre1(·) such that:

1. ApproxTrapGen1(H, σ) takes as input public parameters, a tag matrix
H ∈ Rd×d and parameter σ > 0 and returns a matrix-approximate trap-
door pair (A,R) ∈ Rd×m

q ×Rm̄×ω where R coefficients are drawn from
a Gaussian distribution of parameter σ over R .

2. Let A be generated with an approximate trapdoor as above. The following
two distributions are statistically indistinguishable:

{(A,x,u,y) | u←U(Rd
q),x←ApproxSamplePre1(A,R,0,u, ζ),y = u−Ax mod q}

and {(A,x,u,y) | x←DRm,ζ ,y←DRd,σ
√

(b2ℓ−1)/(b2−1)
,u = Ax+ y mod q}

for any σ ≥
√
b2 + 1 · ω(

√
log d) and ζ ≳

√
b2 + 1

s21(R)
s2d(R)ηϵ(Z

dk).

9

3.3 iNTRU Approximate trapdoors.

In [GL20], Genise and Li introduced a family of Ring-SIS approximate trapdoors
whose pseudorandomness is based on the iNTRU problem and then showed that
the efficient gadget-based trapdoor framework of [MP12] exists on a family of
NTRU lattices. Their trapdoor scheme enjoys small secret keys and is compatible
with applications requiring tag matrices.

In their second trapdoor scheme, the matrix
[
−eT
rI

]
is used as a f -trapdoor

for
[
1 a

]
=

[
1 r−1(fT + eT)

]
where (r, e)←− χk−ℓ+1 is drawn from a distribu-

tion with small entries and f is the approximate gadget vector. They got the
following results, similar from the ones from [CGM19].

ApproxTrapGen1(H, σ)

1. Ā←U(Rd×m̄
q)

2. R←DRm̄×ω,σ

3. set A = [Ā HF − ĀR] ∈ Rd×m
q

4. return (A,R)

ApproxSamplePre1(A,R,H,u, ζ)

1. sample perturbation p←DRm,
√

Σp

2. set coset v = H−1(u−Ap)
3. sample z = (zT

1 ,z
T
2)

T ←DΛv
q (G),σg

4. set x = p+
[
R
I

]
z2 ∈ Rm

5. return x

ApproxTrapGen2(σ)

1. sample r ←− DR,σ, e←− DRm,σ

2. set a′ = r−1(f + e) ∈ Rm

3. set a = (1,a′) ∈ Rm+1
q

4. set R =

[
−eT

rIm

]
∈ R(m+1)×m

5. return (a,R)

ApproxSamplePre2(a,R, u, ζ)

1. sample perturbation p← DRm+1,
√

Σp

2. set coset v = (u− aTp) ∈ Rq

3. sample z = (zT
1 ,z

T
2)

T ← DΛv
q (g

T),σg

4. set x = p+Rz2 ∈ Rm+1

5. return x

Fig. 1: Description of the approximate trapdoor generation and preimage sam-
pling algorithms based on [CGM19] (on the left hand side) and [GL20] (on the
right hand side) instantiations, where the perturbation is sampled with param-
eter Σp = ζ2Im − σ2

g

[
R
I

]
[RT I] on the left side and Σp = ζ2Im+1 − σ2

gRRT

on the right side. Both are independent of the target u. We refer to [CGM19;
GL20] for more information on the iNTRU based trapdoor generation.

Theorem 2. Let r←χ and eT ←χm and set the trapdoor function descrip-
tion as a =

[
1 a′] =

[
1 r−1(f + e)

]
∈ Rm+1

q . Let η = ηϵ(Zn×m) and σg =

ηϵ(Λ
⊥
q (g

T)) ≥
√
b2 + 1·ηϵ(Zn×m) for some ϵ ∈ (0, 1) and ζ ⪰

√
σ2
gRRT + η2Im+1.

Then, the following distributions are within a max-log distance 3 log 1+ϵ
1−ϵ ≤

6ϵ
1−ϵ :

{(a,x, u, y) | u←U(Rq),x←ApproxSamplePre2(a,R, u, ζ), y = u− aTx ∈ Rq}
and {(a,x, u, y) | x←DRm+1,ζ , y←DR,σe mod q, u = aTx+ y ∈ Rq}

for σe = σg

√
(b2ℓ − 1)/(b2 − 1).

10

4 An Approximate-IBE scheme on modules

The first IBE scheme we present is the IBE scheme from [ABB10; BFRS18]
adapted to the module setting, instantiated using the approximate trapdoors
from [CGM19]. At a high level, the scheme will make use of the following blocks:

– The master secret key is a F -approximate trapdoor R ∈ Rm̄×ω associated
to A with tag 0, with subgaussian coefficients of parameter σ, with ω =
d(k−ℓ). The master public key is a tuple consisting of a uniformly random
vector u ∈ Rd

q and the matrix A ∈ Rd×m
q , with m = m̄ + ω chosen as:

A =
[
Ā −ĀR

]
. Taking m̄ = d log q, we get that Ā is full rank with

high probability according to [BJR+23, Lemma 2.6]. Moreover, by taking
σ > 4 · 4 1

nd
√
n, we obtain that A is statistically close to uniform by

Corollary 7.5 from [LPR13].
– A "small-norm" FRD encoding HM as described in Section 2.3. This

allows anyone, with the knowledge of the master public key A, to compute
a public matrix Aid = A +

[
0d,m̄ HidF

]
associated to the identity id

of a user. Then, the secret key for id is an approximate short vector
xid ∈ Rm obtained by using the ApproxSamplePre1 algorithm. Such
a vector satisfies the relation Aidxid ≈ u mod q. We can bound the
approximate error in this relation by using Theorem 1 and the fact that
we use a small-norm FRD encoding.

– Finally, we use the Dual-Regev encryption scheme for the encryption and
decryption algorithms, taking care of the additional error which appears
when using approximate trapdoors.

4.1 Construction

We detail the first IBE where users’ keys are defined based on the approximate
preimage sampling from Theorem 1 and encryption is based on the Dual-Regev
scheme.

– Setup(1n) −→ (mpk,msk):
• (A,R)← ApproxTrapGen1(0, σ) ∈ Rd×m

q ×Rm̄×w, u←U(Rd
q);

• mpk = (A,u), msk = R.

– Extract(mpk,msk, id) −→ skid x ∈ Rm:
• Hid ← HM (id); Aid ← A+

[
0d,m̄ HidF

]
∈ Rd×m

q ;
• x← ApproxSamplePre1(Aid,R,Hid,u, ζ);

– Encrypt(mpk, id,M) −→ C = (b, c) ∈ Rm+1
q :

• Hid ← HM (id); Aid ← A+
[
0d,m̄ HidF

]
∈ Rd×m

q ;
• s←DRd

q ,τ
, e0←DRm−w,τ , e1←DRw,γ , and e′ ←− DR,τ ;

• b← (sTAid)
T + (eT0 | eT1)T and c← sTu+ e′ + ⌊q/2⌋M ;

– Decrypt(skid, C)→M :

11

• set x = skid and compute res ← c − bTx which has integer coeffi-
cients;
• for each i, if the coefficient resi ∈ Z is closer to ⌊q/2⌋ than to 0,

then Mi = 1, otherwise Mi = 0.

Correctness. To use approximate trapdoors with the Dual-Regev approach, we
need to sample the LWE secret term with a small norm instead of sampling from
the uniform distribution, in order to maintain the correctness of the schemes.
Let’s write y ∈ Rd

q the additional error we get by using approximate trapdoors
instead of exact ones. The correctness of the decryption holds if the error term
∥e′ − (eT0 | eT1)x− sTy∥ is small enough, i.e. less than ⌊q/4⌋.

res = c− bTx

= u · s+ e′ + ⌊q/2⌋M −
[
(sTAid)

T + (eT0 | eT1)T
]T

x

= u · s+ e′ + ⌊q/2⌋M − sTAidx− (eT0 | eT1)x
= u · s+ e′ + ⌊q/2⌋M − sT (u+ y)− (eT0 | eT1)x
= e′ − (eT0 | eT1)x− sTy︸ ︷︷ ︸

error term

+⌊q/2⌋M ∈ R.

So we need to choose our parameters properly for the correctness of the Dual-
Regev encryption to hold. We can bound as follows the euclidean norms of the
quantities that appear in the error term:

– ∥e′∥ ≤ tτ
√
n from Lemma 2.

– ∥eT0x0∥ ≤ 2t2τζnd from Lemma 2 and Theorem 1.
– ∥eT1x1∥ ≤ t2γζnd(k − ℓ) from Lemma 2 and Theorem 1.
– ∥sTy∥ ≤ t2τn5/2dσg

q1/r√
r

√
(b2ℓ − 1)/(b2 − 1) from Lemma 2 and Theo-

rem 1.
By substituting these bounds, we get the following constraints:

∥e′ − (eT0 | eT1)x− sTy∥ ≤ ∥e′∥+ ∥(eT0 | eT1)∥+ ∥sTy∥

≤ tτ
√
n+ t2nd

[
ζ (2τ + γ(k − ℓ)) + τn3/2σg

q1/r√
r

√
(b2ℓ − 1)/(b2 − 1)

]
≤ ⌊q/4⌋.

Parameter constraints. The following constraints, combined with the norms
bounds above, must be met to ensure correctness:

– The Gaussian parameter σg used for the G-sampling in the ApproxSamplePre1

algorithm must verify σg ≥
√
2b · (2b + 1) ·

√
log(2nw(1 + 1/ϵ))/π (see

[GM18], Corollary 3.1).
– The Gaussian width for preimage sampling ζ must follow the condition

ζ >
√

(σ2
g + 1)s21(R) + η2ε(Znm), knowing that s1(R) < 1.1σ(

√
2nd +

√
nw + 4.7) with high probability (see [BEP+21], Section A.3), where

s1(R) is the spectral norm of the trapdoor R.

12

– The Gaussian width for approximate trapdoor generation σ must verify
σ > 4 · 4 1

nd
√
n to ensure the public matrix A we use is statistically close

to uniform (see [LPR13], Corollary 7.5).
– We choose to set the Gaussian parameter γ of the Gaussian error e1 ∈ Rw

as γ2 = σ2∥e0∥2 + 2nt2σ2τ2.

The proof of the following Theorem 3 is standard and can be found in the
Supplementary materials, Appendix B.

Theorem 3. The IBE construction with parameters n, d,m, q, k, ℓ, σ, α, ζ, τ and
γ, chosen as in the above description, is IND-sID-CPA secure in the standard
model under the hardness of Module-LWEn,d,q,τ .

4.2 Implementation and performance.

The scheme is implemented in C, using [BEP+21] libraries, inheriting its modu-
larity. It relies on several basic blocks that can be swapped out: the arithmetic
over Zq and Rq, a pseudorandom number generator, and a (constant-time) sam-
pler of discrete Gaussian distributions over Z. To generate our specific discrete
Gaussian distributions, we make use of the following building blocks: an AES-
based pseudorandom number generator (implemented using AES-NI instructions
for x86 architectures), and a sampler of discrete Gaussians over Z similar to
Karney’s sampler [Kar16]. We chose this sampler as it can generate samples
in constant time, independently of the center, Gaussian parameter, and output
value. All the computations that deal with non-integers are carried out with
floating-point operations that do not involve subnormal numbers. We rely on
results from [LS18, Lemma 3] to reduce multiplications in Rq to polynomials
multiplications in rings of the form Zq[X]/⟨Xn + 1⟩. The CRT reduction we
used then allowed us to speed up polynomial arithmetic in Rq.

To assess the security of each parameter set, we estimate the pseudorandom-
ness of the public-key (corresponding to the LWE security) and the hardness
of breaking AISIS. The estimation of the LWE security is done with the LWE
estimator of [APS15] with BKZ as the reduction model. We approximate our
instances by an instance of an unstructured LWE problem in dimension nd. We
follow a very pessimistic core-SVP hardness, where the cost of a BKZ algorithm
with blocksize κ is taken to be the cost of only one call to an SVP oracle in
dimension κ. For the AISIS problem, we follow the approach of [CGM19] which
consists in computing the smallest blocksize achieving the target root Hermite
factor corresponding to forging a signature.

Timings. As expected, the 4 algorithms are more efficient for low value of d.
Concerning the Decrypt algorithm, its execution time relies mostly on the value
of n rather than d. Our timings have been obtained on an Intel i7-8650U CPU
running at 1.9 GHz, and then scaled at 4.2GHz to compare ourselves with other
schemes. We provide concrete parameters sets and the associated concrete results
in Table 2.

13

⌈log2 q⌉ (n, d) ℓ ζ Setup Extract Encrypt Decrypt M− LWEn,d,q,τ

58 (256, 4) 0 1137729 203.52 56.88 17.69 2.72 81

58 (256, 4) 8 1068989 174.94 49.82 15.00 2.40 80

58 (256, 4) 15 1004226 152.70 41.57 12.79 2.19 78

60 (512, 3) 0 1398812 210.85 67.28 19.20 4.06 110

60 (512, 3) 8 1315427 189.35 59.33 17.13 3.80 109

60 (512, 3) 15 1236981 160.33 53.39 14.00 3.22 107

Table 2: Proposed IBE parameters for our first construction of Section 4 with
different pairs of polynomial ring dimension n and rank d, for different moduli
sizes and taking σg = 54.9, σ = 64.1. σg is the Gaussian parameter for the
G-Sampling, σ is the Gaussian width of the trapdoor R used in the Setup
algorithm and ζ is the standard deviation for the Gaussian preimage sampling
in the Extract algorithm. Timings in columns Setup-to-Encrypt are given in ms.
M− LWEn,d,q,τ denotes the concrete bit security of the scheme.

Scheme (n, d) Setup Extract Encrypt Decrypt

[BEP+21] (ℓ = 0) (512, 2) 123.62 45.80 13.12 2.91
[BEP+21] (ℓ = 0) (256, 4) 234.45 67.90 17.88 2.69

This paper (ℓ = 15) (512, 2) 79.10 29.44 10.09 2.36
This paper (ℓ = 15) (256, 4) 152.70 41.57 12.79 2.19

Table 3: Comparison of timings in ms of the different operations of the IBE
scheme between this paper and [BEP+21] for parameters giving an equivalent
level of security.

Comparison with related work. We compare our IBE performance with the IBE
from [BEP+21], which corresponds to the case ℓ = 0, that is to say the use of
exact trapdoors instead of approximate ones. We observe that for a fixed pair
(n, d), the larger ℓ is, the better timings are. Overall, the use of approximate
trapdoors allows to obtain better timings for all the algorithms comprising the
IBE scheme.

5 An IBE scheme based on the hardness of iNTRU

In this Section, we introduce the IBE2 scheme, instantiated using gadget-based
approximate trapdoors over iNTRU trapdoors combined with the Dual-Regev
encryption scheme over modules.

We recall that m = k − ℓ where k = ⌈logb q⌉ and that the approximate
gadget vector f is defined as fT =

[
bℓ bℓ+1 bℓ+2 · · · bk−1

]
∈ Rk−ℓ . Here, the

master public key is a vector a ∈ Rm+1
q generated with the ApproxTrapGen2

algorithm and whose pseudorandomness is based on the iNTRU problem. The
master secret key r, e ∈ Rm+1 defines a f -approximate trapdoor associated to
a. An identity is mapped to an element in Rq by the use of a hash function
modeled as a random oracle in the security proof; the secret key associated to
an identity id is an approximate short vector x ∈ Rm+1.

14

5.1 IBE construction details

We detail below the four algorithms of the IBE2:

– Setup(1n) −→ (mpk,msk):

• let a =
[
1 aT

0

]T ∈ Rm+1
q and R =

[
−eT
rIm

]
∈ R(m+1)×m output by

ApproxTrapGen2(σ); and let H : {0, 1}⋆ → Rq a hash function;
• output mpk = (a,H) and msk = R.

– Extract(mpk,msk, id)→ xid = x2 ∈ Rm:
• define the tag hid = H(id) ∈ Rq;
• sample a short preimage x = (x1,x2

T)T ← ApproxSamplePre2(a,R, hid, ζ);

– Encrypt(mpk, id,M)→ C = (b, c) ∈ Rm+1
q :

• compute hid = H(id); sample s←DR,τ , e1←DRm,τ , e2←DR,τ ;
• compute b = sa0 + e1 ∈ Rm

q and c = hid · s+ e2 + ⌊q/2⌋M ∈ Rq,
where a message is encoded as M ∈ R2;

– Decrypt(xid,C)→M :
• parse xid as (x1,x2); and compute res← c− bTx2;
• for each i, if the coefficient resi ∈ Z is closer to ⌊q/2⌋ than to 0,

Mi = 1, otherwise Mi = 0.

Correctness. We have the following equality:

c− bTx2 = hid · s+ e2 + ⌊q/2⌋M − (sa0 + e1)
Tx2

= s · x1 + saT
0x2 − y · s+ e2 + ⌊q/2⌋M − saT

0x2 − eT1x2

= ⌊q/2⌋M + s · (x1 − y) + e2 − eT1x2.

Furthermore, the following bounds apply:

– ∥s · x1∥ ≤ t2τζn from Lemma 2 and Theorem 2.
– ∥y · s∥ ≤ t2τσg

√
(b2ℓ − 1)/(b2 − 1)n from Lemma 2 and Theorem 2.

– ∥e2∥ ≤ tτ
√
n from Lemma 2.

– ∥eT1x2∥ ≤ t2τζnm from Lemma 2 and Theorem 2.

By substituting these bounds, we obtain:

∥s · (x1 − y) + e2 − eT1x2∥ ≤ ∥s · x1∥+ ∥y · s∥+ ∥e2∥+ ∥eT1x2∥

≤ t2τ

[
ζ (m+ 1) + σg

√
(b2ℓ − 1)/(b2 − 1)

]
+ tτ
√
n

≤ ⌊q/4⌋.

15

Parameters constraints. The following constraints combined with the errors
norm constraints above should be satisfied:

– The Gaussian parameter σg used for the G-sampling in the ApproxSamplePre2

algorithm must verify σg ≥
√
2b · (2b + 1) ·

√
log(2nw(1 + 1/ϵ))/π (see

[GM18], Corollary 3.1).
– The Gaussian width for preimage sampling ζ must follow the condition

ζ >
√
(σ2

g + 1)s21(R) + η2ε(Znm), where s1(R) is the spectral norm of the
trapdoor R (see [BEP+21], Section A.3).

The proof of the following is adapted from the GPV IBE proof [GPV08,
Section 7.2] and is given in the Supplementary materials, Appendix C.

Theorem 4. Our IBE construction with parameters n,m, q, k, ℓ, σ, σg, ζ, τ and
γ is IND-sID-CPA secure in the random oracle model under the hardness of
iNTRUq,DR,σ

and Ring-LWEn,q,τ .

5.2 Implementation and performance

In [GGH+19], the authors only propose a reduction from a non-standard version
of LWE to iNTRU. Therefore, in the absence of a thorough study on the asymp-
totic and practical security of the iNTRU problem, which we leave for future
work, we have chosen to estimate the security of our iNTRU instances by relying
on the existing cryptanalysis on NTRU. As explained in [GGH+19], there is a
syntactic link between NTRU and iNTRU. To the best of our knowledge, there is
no known a reduction between the two problems and the analysis of the iNTRU
assumption might deserve additionally study. Still, we additionally consider the
practical security of NTRU for our target set of parameters and we take into
account the known cryptanalysis effort on iNTRU.

For security estimation, we follow the same approach as in [GL20] to assess
the concrete security of the IBE2 scheme. We determine the hardness of our
underlying lattice problem by computing the root Hermite factor, introduced in
[GN08]. Then, we use the following heuristic relation between the blocksize κ
and the root Hermite factor δ to find the smallest blocksize which would break
our underlying lattice problem:

δ ≈ (
κ

2πe
(πκ)1/κ)1/2(κ−1).

Finally, our experiments estimate the running time of the BKZ algorithm
to analyse the concrete security of the scheme. This algorithm makes use of
an oracle to solve the Shortest Vector Problem (SVP) in smaller lattices. We
chose the "Core-SVP" model introduced in [ADP+16] in the sieving regime as
the SVP oracle for the BKZ algorithm with time complexity 20.292κ+16.4 in the
blocksize κ.

16

Overstretched parameters. [LW20] adapts the attack from [KF17] on iNTRU,
which applies on the parameters originally proposed for the homomorphic en-
cryption scheme from [GGH+19]. The attack can be performed when the mod-
ulus q is much larger than the dimension of the associated lattices. The target
iNTRU instance has an error and secret that follow a uniform binary distribution.
Following [KF17] attack, [LW20] uses the fact that a very dense sublattice can be
found in this NTRU-like lattice, because of the overstretched regime. Relying on
a lemma from Pataki and Tural [PT08, Lemma 1], they can bound the volume
of this sublattice and run a BKZ-reduction which leads to a full recovery of the
iNTRU secret. [DW21] improves the asymptotic bound given by Kirchner and
Fouque [KF17] by conducting a refined analysis which lowers the overstretched
regime for NTRU with ternary distribution to the value q = n2.484+o(1).
They also provide a concrete analysis, computing a bound on the modulus q
for which the attacks exploiting the overstretched regime are more efficient than
standard secret key recovery attacks. The authors of [DW21] run experiments
which allows to detect the fatigue "point", which separates these two regimes.

The cryptanalysis carried out by [LW20] and [DW21] can be adapted for
the iNTRU instances we consider, where the secret and the error both follow
a Gaussian distribution. [DW21] also consider the case where the NTRU se-
cret distributions are Gaussian. Indeed, in both cases, the cryptanalysis in the
overstretched regime requires to perform lattice reductions on sublattices of a
NTRU-like lattice, in order to retrieve the very dense sublattice. We leave the
detailed adaptation of this attack to iNTRU and its experimental study for a
future work. For our concrete parameters analysis, we took care to fall outside
the range of parameters affected in the overstretched regime.

Timings. Our timings have been obtained on an Intel i7-8650U CPU running at
1.9 GHz, and then scaled at 4.2GHz to compare ourselves with other schemes.
Results are provided in Table 4. The use of the efficient gadget-based approxi-
mate trapdoor framework together with the iNTRU hardness assumption allows
us to obtain efficient algorithms. The slowest of the 4 algorithms of the IBE2
scheme are the Setup and Extract algorithms, which correspond respectively
to the approximate trapdoor generation and preimage sampling phases of the
scheme. However, the Setup algorithm is usually not performed often, and the
subroutine algorithms used by Extract for sampling are really modular, leaving
the way for possible future improvements. Moreover, our Setup and Extract al-
gorithms are competitive with other NTRU-based IBE (see Table 5 and Table 6).

Comparison with related works. We compare the IBE2 timings with the ones
of [DLP14] (re-implemented in [MSO17]) and with [ZMS+21], two IBE schemes
whose security is based on the NTRU hardness assumption. Our comparison
experiments were carried out using equivalent parameters sets between the dif-
ferent scheme. In particular, we have been careful to use equivalent module sizes
and equivalent noise rate when performing Gaussian Sampling.

17

(n, q) ⌈log2(q)⌉ Setup Extract Encrypt Decrypt Bit security
(256, 1073741441) 30 1.01 2.13 0.39 0.03 64
(512, 1073741441) 30 2.12 3.79 0.74 0.06 115
(1024, 1073741441) 30 4.08 7.65 1.49 0.11 223

(256, 16777601) 25 0.78 1.66 0.23 0.02 35
(512, 16777601) 25 1.48 3.00 0.49 0.04 82
(1024, 16777601) 25 3.32 5.92 1.10 0.07 159

Table 4: Timings of the different operations for different values of n, given in ms
from Setup to Decrypt.

Scheme (n, ⌈log2(q)⌉) Security level Setup Extract Encrypt Decrypt

[DLP14] (512, 26) < 80 3.84s 1.77 0.10 0.05
[DLP14] (1024, 26) < 192 23.93s 6.95 0.27 0.09

This paper (512, 25) 82 1.48 3.00 0.49 0.04
This paper (1024, 25) 159 3.32 5.92 1.10 0.07

Table 5: Timings comparison of the different operations of the IBE scheme be-
tween this paper and [DLP14] (the timings are extracted from the [MSO17]
article, scaled up to account for CPU differences) for different parameter sets.
The timings are given in ms, except for the Setup algorithm from [DLP14], which
is given in seconds.

Scheme (n, ⌈log2(q)⌉) Security level Setup Extract Encrypt Decrypt

[ZMS+21] (1024, 24) 128 102 0.82 0.05 0.06
[ZMS+21] (2048, 25) 256 292 2.62 0.10 0.13
[ZMS+21] (1024, 36) 80 165 26.4 0.08 0.09
[ZMS+21] (2048, 38) 160 643 57.8 0.16 0.18

This paper (1024, 25) 159 3.32 5.92 1.10 0.07
This paper (2048, 25) 293 10.21 12.79 2.96 0.16
This paper (1024, 30) 191 4.08 7.65 1.49 0.11
This paper (2048, 30) 412 12.51 16.03 3.89 0.23

Table 6: Timings comparison of the different operations of the IBE scheme in
this paper and in [ZMS+21] for different sets of parameters in ms.

We observe that we obtain better timings for the Setup algorithm than
[DLP14] and [ZMS+21] and for the Extract for some sets of parameters. Fur-
thermore, our Decrypt algorithm is slightly faster than [DLP14]. However, the
Encrypt algorithms is less efficient than theirs. The use of binomial distribution
improves the timings for encryption. An improvement can be obtained in our
case by using binomial distribution, but we need more samples in our case which
still affects performance for encryption; we make n(2 + m) calls to the integer
Gaussian sampler while encryption in [DLP14] and [ZMS+21] can make use of
only 3n binomial sampling calls. As in [ZMS+21], our Extract algorithm is slower
than the Sign algorithm from the Falcon signature scheme [FHK+17]. Note also
that for a similar security level, Falcon can use smaller parameters than us.

18

We obtain an overhead in terms of parameters sizes compared to [DLP14] and
[ZMS+21], but the trapdoor generations rely on a different paradigm. Results
on public and secret sizes are provided in Appendix D. Nonetheless, as stated
in [CGM19], the use of approximate trapdoors instead of exact ones helps us to
reduce the sizes of the public-key and signatures by up to two times. Therefore,
as expected, our obtained sizes for the master and the users’ private keys and
the ciphertexts are close to the ones of [GL20] whose signature scheme relies on
the same paradigm as the IBE2 scheme.

Acknowledgements. This work is supported by the ANR ASTRID project
AMIRAL (ANR-21-ASTR-0016).

References

[ABB10] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the
standard model. In EUROCRYPT, LNCS. Springer, 2010.

[ADP+16] E. Alkım, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum
key exchange - A new hope. In USENIX Security Symposium, 2016.

[APS15] M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness
of learning with errors. J. Mathematical Cryptology, 2015.

[BEP+21] P. Bert, G. Eberhart, L. Prabel, A. Roux-Langlois, and M. Sabt.
Implementation of lattice trapdoors on modules and applications.
In PQCrypto, Lecture Notes in Computer Science. Springer, 2021.

[BF01] D. Boneh and M. K. Franklin. Identity-based encryption from the
weil pairing. In CRYPTO, LNCS. Springer, 2001.

[BFRS18] P. Bert, P. Fouque, A. Roux-Langlois, and M. Sabt. Practical im-
plementation of ring-sis/lwe based signature and IBE. In 2018.

[BJR+23] K. Boudgoust, C. Jeudy, A. Roux-Langlois, and W. Wen. On the
hardness of module learning with errors with short distributions. J.
Cryptology, 28(1), 2023.

[CGM19] Y. Chen, N. Genise, and P. Mukherjee. Approximate trapdoors for
lattices and smaller hash-sign signatures. In ASIACRYPT, 2019.

[CHK+10] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how
to delegate a lattice basis. In EUROCRYPT, 2010.

[Coc01] C. C. Cocks. An identity based encryption scheme based on quadratic
residues. In IMACC. Springer, 2001.

[DLP14] L. Ducas, V. Lyubashevsky, and T. Prest. Efficient identity-based
encryption over NTRU lattices. In ASIACRYPT, 2014.

[DW21] L. Ducas and W. P. J. van Woerden. NTRU fatigue: how stretched
is overstretched? In ASIACRYPT (4), 2021.

[FHK+17] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,
T. Prest, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang. Falcon:
fast-fourier lattice-based compact signatures over NTRU, 2017.

[GGH+19] N. Genise, C. Gentry, S. Halevi, B. Li, and D. Micciancio. Homo-
morphic encryption for finite automata. In ASIACRYPT, 2019.

19

[GL20] N. Genise and B. Li. Gadget-based intru lattice trapdoors. In IN-
DOCRYPT, 2020.

[GM18] N. Genise and D. Micciancio. Faster gaussian sampling for trapdoor
lattices with arbitrary modulus. In EUROCRYPT, 2018.

[GN08] N. Gama and P. Q. Nguyen. Predicting lattice reduction. In EU-
ROCRYPT, Lecture Notes in Computer Science. Springer, 2008.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In STOC, 2008.

[Kar16] C. F. F. Karney. Sampling exactly from the normal distribution.
ACM Trans. Math. Softw., 42(1):3:1–3:14, 2016.

[KF17] P. Kirchner and P. Fouque. Revisiting lattice attacks on overstretched
NTRU parameters. In EUROCRYPT (1), volume 10210 of Lecture
Notes in Computer Science, pages 3–26, 2017.

[LCC14] R. W. F. Lai, H. K. F. Cheung, and S. S. M. Chow. Trapdoors for
ideal lattices with applications. In Inscrypt, 2014.

[LPR13] V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-lwe
cryptography. In EUROCRYPT. Springer, 2013.

[LS15] A. Langlois and D. Stehlé. Worst-case to average-case reductions
for module lattices. DCC, 75(3):565–599, 2015.

[LS18] V. Lyubashevsky and G. Seiler. Short, invertible elements in par-
tially splitting cyclotomic rings and applications to lattice-based
zero-knowledge proofs. In EUROCRYPT, 2018.

[LW20] C. Lee and A. Wallet. Lattice analysis on mintru problem. Cryp-
tology ePrint Archive, Paper 2020/230, 2020.

[Lyu12] V. Lyubashevsky. Lattice signatures without trapdoors. In EURO-
CRYPT, volume 7237 of LNCS, pages 738–755. Springer, 2012.

[MP12] D. Micciancio and C. Peikert. Trapdoors for lattices: simpler, tighter,
faster, smaller. In EUROCRYPT, 2012.

[MR07] D. Micciancio and O. Regev. Worst-case to average-case reductions
based on gaussian measures. SIAM J. Comput., 2007.

[MSO17] S. McCarthy, N. Smyth, and E. O’Sullivan. A practical implemen-
tation of identity-based encryption over NTRU lattices. In 2017.

[PT08] G. Pataki and M. Tural. On sublattice determinants in reduced
bases. arXiv preprint arXiv:0804.4014, 2008.

[Sha84] A. Shamir. Identity-based cryptosystems and signature schemes. In
CRYPTO, 1984.

[ZMS+21] R. K. Zhao, S. McCarthy, R. Steinfeld, A. Sakzad, and M. O’Neill.
Quantum-safe hibe: does it cost a latte? ePrint Archive, 2021.

[ZY22] S. Zhang and Y. Yu. Towards a simpler lattice gadget toolkit. In
Public Key Cryptography, 2022.

20

Supplementary materials

A Definition of an IBE scheme

An IBE scheme is composed of 4 polynomial time algorithms defined as follows:
Setup(1n)→ (mpk,msk): takes as input a security parameter n and outputs

the master public key mpk and the master secret key msk. We assume public
parameters which are part of mpk are taken as input to all 3 next algorithms.

Extract(mpk,msk, id)→ skid: takes as input the security parameter, the mas-
ter keys mpk, msk and an identity id ∈ ID and outputs a private key skid
associated to the identity id.

Encrypt(mpk, id,M)→ C: takes as input the security parameter, the master
public key mpk, an identity id and a message M and outputs a ciphertext C
which is the encryption of M for identity id.

Decrypt(mpk, skid, C) → M or Error: takes as input the master public key
mpk, a private key skid associated to the identity id and a ciphertext C, it outputs
either a message M or an Error message indicating the ciphertext is invalid.

Correctness. An IBE is correct if for any message M in the message space and
identity id such that (mpk,msk)← Setup(1n) and skid ← Extract(mpk,msk, id),
Decrypt(mpk, skid,Encrypt(mpk, id,M)) = M holds with overwhelming proba-
bility.

Security Game. We describe the notion of ciphertext indistinguishability un-
der a selective-identity chosen-plaintext attack (IND-sID-CPA), meaning that
the adversary indicates the identity on which he would like to be challenged.
The notion is defined as a game between an adversary A and a challenger, and
works as follows:

– Initialisation: The adversary A chooses the challenge identity id∗.
– Setup : The challenger runs Setup(1n) and gives the master public key

msk to A.
– Extract queries - Phase 1: The adversary can make private-key extraction

queries on identities id ̸= id∗, and the challenger answers by running
skid ← Extract(mpk,msk, id).

– Challenge: The adversary A outputs two plaintexts M0,M1. The chal-
lenger chooses a random bit b∗ ← {0, 1} and sets the challenge ciphertext
to C∗ = Encrypt(mpk, id∗,Mb∗). The challenge ciphertext C∗ is sent to A.

– Extract queries - Phase 2: The adversary can make additional queries (an-
swered as in Phase 1).

– Guess: The adversary outputs a bit b and wins if b∗ = b.

The advantage of the adversary A playing the IND-sID-CPA security game
above is Adv(Aind-sID-cpa

IBE) =| Pr(b = b∗)− 1
2 |. An IBE scheme is IND-sID-CPA

secure if, for all PPT adversary A, his advantage Adv(Aind-sID-cpa
IBE) is negligible.

21

B Proof of Theorem 3

Proof. The proof proceeds in a sequence of games Gi where the first game G0 is
identical to the original IND–sID-CPA game. In the last game in the sequence,
the adversary has no information left about the initial message and hence has
advantage zero. We show that a PPT adversary cannot distinguish between the
intermediate games.

Game G0. This is the initial IND-sID-CPA game between an adversary A and
an IND-sID-CPA challenger.

Game G1. In this game, we change the way the challenger generates the public
matrix A by adding information about the identity id∗ that A targets for his
attack. In Game 0, A was generated thanks to ApproxTrapGen1(0, σ), together
with the associated trapdoor R. We had A = [Ā −ĀR]. The public matrix
A is now generated in G1 thanks to the algorithm ApproxTrapGen1(−Hid∗ , σ),
so that we have A = [Ā −Hid∗F − ĀR] ∈ Rd×m

q .
This matrix A is statistically indistinguishable from a uniformly random

matrix.
The challenger answersA’s private key queries on identities id ̸= id∗ by calling

Extract((A,u),R, id) and then using ApproxSamplePre1(Aid,R,Hid,u, ζ). We
have Aid = [Ā (Hid −Hid∗)F − ĀR] and Hid −Hid∗ is invertible because of
the FRD construction, which allows the challenger to get a private key associated
to the identity id.

Game G2. This game is identical to G1 except that the challenge ciphertext C∗

is chosen as a uniformly random element in Rm+1
q instead of being chosen by

calling Encrypt((A,u), id∗,Mb∗).

Reduction from Module-LWE. We show that G2 and G1 are computationally
indistinguishable for the adversary A under the Module-LWE assumption.

Suppose A has a non-negligible advantage in distinguishing G2 and G1. We
will use A to construct a simulator B who will be able to solve the Module-LWE
problem with non-negligible advantage.

The simulator B receives m̄ + 1 samples (Ai, bi)0≤i≤m̄ with Ai ∈ Rd
q and

bi ∈ Rq as an instance of the decisional Module-LWE problem. The simula-
tor also receives the identity id∗ targeted by the adversary A. The simulator
sets A′ = (A1, . . . ,Am̄) ∈ Rd×m̄

q and b′ = (b1, . . . , bm̄) ∈ Rm̄
q and then runs

ApproxTrapGen1(−H id∗ , σ) to get A = [A′ −H id∗F −A′R] together with
the trapdoor. Next, B sets u = A0 ∈ Rd

q and he sends (A,u) to A as the master
public key. Then, B answers A’s private key queries as in G1.

Afterwards, the adversary outputs two plaintexts M0,M1 and sends them
to B. The simulator generates a random bit b∗, and the challenge ciphertext
C∗ = (b∗, c∗) as follows:

b∗ = (b′T | − b′TR+ êT)T , c∗ = b0 + ⌊q/2⌋Mb∗ ,

22

where ê← DRw,µ for some real µ, that is explicited below.

Samples from the LWE distribution. If the Module-LWE samples are drawn from
the Module-LWE distribution, we have:

b′T = sTA′ + e′T and b0 = sTA0 + e0,

for some s ∈ Rd
q , e′ ← DRm̄,τ and e0 ← DR,τ . Therefore, the first part of

the ciphertext is b∗ = Aid∗
Ts + (e′T | − e′TR + êT)T and the second part is

c∗ = sTA0 + e0 + ⌊q/2⌋Mb∗ .
Then, for a fixed error e′, the term −e′TR is distributed as DRw,σ||e′|| since

E[e′TR] = e′TE[R] = 0 and cov(e′TR) = σ2e′Te′Iw = σ2||e′||2Iw by linearity
of expectation and bilinearity of covariance. Moreover, the random variable ê
follows the Gaussian distribution DRw,µ and is independent from the random
variable e′TR. Therefore, −e′TR + ê is indistinguishable from a sample drawn
from the distribution DRw,γ for µ satisfying γ2 = (σ||e′||)2 + µ2.

Then, the challenge ciphertext (b∗, c∗) follows the same distribution as in G1.

Samples from the uniform distribution. If the Module-LWE samples are drawn
from the uniform distribution, the ciphertext challenge also looks uniforms as in
G2.

Finally, the adversary A outputs a guess b. Because we supposed A has a non-
negligible advantage in distinguishing G1 and G2, if b = b′ with overwhelming
probability, the simulator concludes that the challenged instance was drawn
from the Module-LWE distribution. Otherwise, B concludes that the Module-LWE
instance was drawn from the uniform distribution.

C Proof of Theorem 4

For the sake of completeness, we give the IND-sID-CPA proof of the IBE2
scheme, which is directly adapted from [GPV08, Theorem 7.2].

Proof. The idea of the proof is to simulate the view of the adversary given a
Ring-LWE instance (a′i, b

′
i) for 0 ≤ i ≤ m for which we build an attacker S who

makes QH queries to H.
We construct a new simulation game given a0 = [a′1 . . . a

′
m]. S chooses an

index i∗ at random in [1, QH] and sets hid⋆ = a′0.
A hash query on input id is answered as follows: it first checks whether

an entry of the form (id, ∗, ∗, ∗) already exists in the hash table. If it is not
the case, it responds with a value uid such that an approximated preimage for
H(id) = hid is known i.e: it samples x←DRm+1,ζ and yid←DR,σe

such that
yid = (xT

1 ,x2
T)T

[
1 a0

]
, sets hid = (xT

1 ,x2
T)T

[
1 a0

]
− yid and adds the tuple

(id, hid,x2, yid) in the hash table.
An extraction query for an identity id is responded as follows: assuming that

an entry for id already exists in the table, the corresponding x2 is output by S.

23

Note that the response to the extract queries are close to the response pro-
vided in the real game by Theorem 2 if H is modeled as a random oracle and the
way the public key is generated is indistinguishable from that in the real game
under the iNTRU assumption.

When the attacker outputs two messages m0,m1 and id∗, if id∗ has not been
queried to H, then S aborts; otherwise the challenger sets the challenger cipher-
text as:

(b, c) =
([
b′1 ... b′m

]
, b′0 + ⌊q/2⌋mb

)
∈ Rm+1

q .

The attacker S outputs the same bit as A. Assuming no abort has occurred,
they both have the same advantage, which concludes the proof.

D Parameters’ sizes comparison

The use of the [MP12] paradigm doesn’t make us competitive compared to
[DLP14] and [ZMS+21] in term of parameters sizes. As explained in Section 5.2,
the trapdoor generations rely on a different paradigm. However, for complete-
ness, we provide comparisons with [DLP14] in Table 7 and with [ZMS+21] in
Table 8 in terms of parameters’ sizes.

Table 7: Parameters sizes comparison between IBE2 parameters sizes and
[DLP14] for different sets of parameters at a similar security level, in Bytes.

Scheme (n, ⌈log2(q)⌉) Security mpk msk skid Ciphertext
[DLP14] (512, 23) < 80 1536 6144 1375 1625
[DLP14] (1024, 27) < 192 3584 14336 3375 3750

This paper (512, 25) ≈ 80 14720 16192 16192 16192
This paper (1024, 25) ≈ 192 32000 35200 35200 35200

Table 8: Parameters sizes comparison between IBE2 parameters sizes and
[ZMS+21] for different sets of parameters at a similar security level, in Bytes.

Scheme (n, ⌈log2(q)⌉) Security mpk msk skid Ciphertext
[ZMS+21] (1024, 36) 80 4608 18432 4608 9248
[ZMS+21] (1024, 24) 128 3072 12288 3072 6176
[ZMS+21] (2048, 25) 256 6400 25600 6400 12832
This paper (512, 25) > 80 14720 16192 16192 16192
This paper (1024, 25) > 128 32000 35200 35200 35200
This paper (2048, 25) > 256 64000 70400 70400 70400

We observe that using approximate trapdoors instead of exact ones can help
reduce the size of public-keys and signatures by up to two times.

24

