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Abstract. In this paper we present a new post-quantum electronic-
voting protocol. Our construction is based on LWE fully homomorphic
encryption and the protocol is inspired by existing e-voting schemes,
in particular Helios. The strengths of our scheme are its simplicity and
transparency, since it relies on public homomorphic operations. Further-
more, the use of lattice-based primitives greatly simplifies the proofs
of correctness, privacy and verifiability, as no zero-knowledge proof are
needed to prove the validity of individual ballots or the correctness of
the final election result. The security of our scheme is based on classi-
cal SIS/LWE assumptions, which are asymptotically as hard as worst-
case lattice problems and relies on the random oracle heuristic. We also
propose a new procedure to distribute the decryption task, where each
trustee provides an independent proof of correct decryption in the form
of a publicly verifiable ciphertext trapdoor. In particular, our protocol
requires only two trustees, unlike classical proposals using threshold
decryption via Shamir’s secret sharing.

Keywords: E-vote * Post quantum - Fully homomorphic encryption -
Lattice based protocol - LWE

1 Introduction

Electronic-voting aims at providing several elaborated properties. Basically, an
e-voting protocol should ensure privacy and verifiability. The first one prevents
anyone from retrieving the vote of a particular user, and the second one allows
each voter to verify that his vote appears in the bulletin board (individual ver-
ifiability) and ensures that the final count of votes corresponds to the votes
of legitimate voters (universal verifiability). Also, the scheme is correct when
the outcome of the election counts the votes of the honestly generated votes.
Among other desirable properties for e-voting schemes, there are strong forms
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of privacy such as receipt-freeness, coercion-resistance and ballot independence.
Defining security properties for electronic based systems has long been debated
and the design of secure e-voting protocols achieving all these properties happens
to be more intricate than for traditional paper-based systems. Several proposal
appeared over the last years and could be categorized in different ways, depend-
ing on how the privacy is guaranteed or the tally function is implemented. How-
ever, until now, the security of all provably secure protocols still rely on classical
assumptions. This means that these proposed schemes could all be compromised
if efficient quantum computers arise. Therefore, designing a quantum resistant
e-voting scheme is very challenging, and it is a promising approach to comfort
people in using e-voting protocols. This paper is a first step towards this goal.

In this paper we present a new e-voting protocol build on post quantum cryp-
tographic primitives: unforgeable lattice-based signatures, LWE-based homo-
morphic encryption and trapdoors for lattices. The scheme is inspired by exist-
ing e-voting protocols, in particular Helios [2], which has already been used for
medium-scale elections (and its variant Belenios). However, our scheme differs in
two principal ways. The underlying primitive is different: Helios [1] is a remote e-
voting protocol based on the additive property of ElGamal (which is broken by
Shor’s quantum algorithm). Since additive homomorphism lacks some expres-
siveness, each voter must ensure that the plaintext encrypted in their ballot
has a specific shape, suitable for homomorphic additions. For example, if the
voter gives one ciphertext per candidate, he must prove that all these cipher-
texts encrypt 0, except the one corresponding to the chosen candidate, which
encrypts 1. Proving such semantic properties on the plaintext without revealing
its content was usually achieved using zero-knowledge proofs. In our protocol, the
fully homomorphic encryption based on Ducas and Micciancio [13] bootstrap-
ping allows to efficiently transform full-domain ciphertexts into such ciphertexts
with specific semantic. This effectively removes the need of a ZK proof.

Helios uses another zero-knowledge proof in the final phase of the voting
protocol, when the trustees decrypt the final result of the votes and must prove
that this result is correct without revealing their own secret. In our protocol, this
proof is replaced by publicly verifiable ciphertext trapdoors, which are produced
using techniques borrowed from trapdoor-based lattice signatures, GPV [15],

r [21], based on Ajtai’s SIS problem.

Interestingly, combining these publicly verifiable ciphertext trapdoors with
the inherent randomness of LWE-samples simplifies a lot the proof of a variant of
the strongest game-based ballot privacy recently introduced by [5, Definition 7],
since all the proposed oracles (except one) essentially follow the protocol, and
the simulator, which is usually the most complex part of the game, is simply the
identity function.

Our protocol also satisfies correctness and verifiability in the sense of [17].
In order to deter the bulletin board from stuffing itself, we add an additional
authority in charge of providing each user with a private and public credential
which allows him to sign his vote. This solution was already used in the vari-
ant of Helios proposed in [10]. And to compute his vote, the user encrypts his
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vote expressed as a sequence of 0/1, and signs the ciphertext along its public
credential and sends it to the bulletin board. Cortier and Smyth [11,24] shows
that homomorphic based e-voting protocols and in particular Helios could be
vulnerable to replay attacks that allow a user to cast a vote related to a previ-
ously cast ballot. This type of attacks could possibly incur a bias on the vote of
other users and break privacy. Although this attack has a small impact in prac-
tice, the model for privacy should capture such attacks. Until now, this attack
is prevented by removing ballots which contains a ciphertext that does already
appear in a previously cast ballot. This operation is called cipherext weeding.
This strategy would not work with fully homomorphic schemes, as bootstrapping
operations would allow an attacker to re-randomize duplicated ballots beyond
anything one can detect.

In this paper, we use the one-wayness of the bootstrapping to create some
“plaintext-awareness” auxiliary information. This auxiliary information is not
needed to prove the verifiability of the scheme. This information could be viewed
as another encryption of the same ballot, hence it does not leak information on
the plaintext vote. The only purpose of this auxiliary information is to guarantee
that the ballot has not been copied or crafted from other ballots in the bulletin
board as publicly viewed by other users. Thus, the voter sends this info with his
ballot, which remains encrypted in the bulletin board until the end of the voting
phase. At this point, for the sake of transparency, it could be safely revealed
to everyone. In practice, we model this temporarily private channel by giving a
public key to the bulletin board, and letting him reveal the private key at the
end of the voting phase.

Finally, in order to guarantee privacy even when some of the authorities
keys are corrupted, we show that our encryption scheme can be distributed
among t trustees. Instead of using a threshold decryption based on Shamir’s
secret sharing, we rely on a simple concatenated LWE scheme. Each of the
trustees carries its own decryption part, and any attempt to cheat is publicly
detected. On one hand, we lose the optional ability to reconstruct the result if
some trustees attempt a denial of service (which can be prevented anyway by
taking the appropriate legal measures). On the other hand, once the public key
has been set, we detect any attempt to cheat even if all the trustees collude.
And as a bonus, our protocol can be instantiated with only two trustees which
operate independently. In comparison, at least three trustees are needed for
Shamir’s interpolation, and if they all collude, they could produce a valid proof
for a false result.

Open Problems: Our definition of an e-voting scheme differs from previous ones
in that the bulletin board is carried with an additional secret to decide whether a
ballot should be cast or not, but this secret key could be publicly disclosed after
the voting phase. We define correctness and verifiability as in [17] and propose
an adaptation of the recent definition of privacy [5] to our setting. Due to the
constraint on the validation of a ballot before it is cast, the definition of the strong
consistency property [5, Definition 8] does not adapt properly to our setting,
and thus, we leave the definition of proper extensions to strong correctness and
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strong consistency and privacy models against a malicious bulletin board and/or
corrupted registration authority for a future work.

Finally, our proof of privacy relies on an arguably strong assumption, where a
properly randomized bootstrapping function is modeled as a random oracle. We
require this assumption in order to successfully simulate the Tally in the privacy
game, and to a lesser extent, when we use Micciancio and Peikert’s trapdoors
to sample small solutions for SIS without revealing information on the trapdoor
or on the keys. Proving the same result in the standard model is still an open
problem.

2 Preliminaries

In the following, we specify the definition and the properties we consider for our
e-voting protocol.

2.1 Definition of Single Pass E-voting Schemes

In a single pass e-voting scheme, each user publishes only one message to cast
his vote in the bulletin board. A voting scheme is specified by a family of result
functions denoted as p : (Z x V)* — R where V is the set of all possible vote,
is the set of voter’s identifiers, R specifies the space of possible result. A voting
scheme is also associated to a re-vote policy. In our case, we will assume that
the last vote is taken into account. The entities are:

— A;p: the authority that handles the registration of users and updates the public
list of legitimate voters.

— BB, the bulletin board; The bulletin board checks the well-formedness of
received ballots before they are cast. In our model, we assume that BB uses
a secret key to perform a part of this task but the secret could be revealed
after the voting phase.

— T: a set of trustee(s) in charge of setting up their own decryption keys, and
computing the final tally function.

Let A denote the security parameter. We denote as ¢ the number of candidates, L
an upper bound on the number of voters and ¢ the number of trustees. We denote
as Ly a public list of users set at empty at the beginning. To simplify, we assume
an authenticated private channel between the trustees. For our description, we
will be given § = (KeyGenS, Sign, VerifyS) an existentially unforgeable scheme
and £ = (KeyGenEgg, Encgg, Decgg) a non-malleable encryption scheme both
assumed quantum resistant. The algorithms associated to a single pass e-voting
scheme could be defined as follows:

~ (sk = (ski,...,sks),params) « Setup(1*,¢,/, L): Each trustee chooses its
secret key sk; and publishes a public information pk; and proves that it knows
the corresponding secret w.r.t the published public key.
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The bulletin board runs (pkgg,skgg) « KeyGenEgg(1?), it publishes pkgg
and keeps skgp private. This step implicitly defines the public pk of the e-
voting scheme that includes pkgg. The parameters params includes the public
key pk, the numbers ¢, ¢, L, the list £y, and the set of valid votes V. All these
parameters are taken as input to all the following algorithms.

— (usk, upk) «+ Register(1*,id): on input a security parameter and a user identity,
it provides the secret part of the user credential usk and its public part upk.
It updates the public list £y with upk.

— b — Vote(pk, usk, upk, v): It takes as input a secret credential and public cre-
dential that possibly inclides id and a vote v € V. It outputs a ballot b which
consists in a content message that includes upk, an encryption c of v, an auxil-
iary information aux encrypted using the key pkgg and a version number num
plus a signature of this content message under the secret usk.

— ProcessBB(BB, b, skgg) As long as the bulletin board is open, when the bulletin
board manager receives a ballot b: its parses it as (aux, upk, ¢, num, o), verifies
that upk € Ly and uses upk to verify the signature of the ballot. Then he
decrypts aux using skgg. And it performs a validity check on b and upk and
finally verifies the revote policy with the version number. If b passes all these
checks, it is added in BB, otherwise BB remains unchanged.

- (II,...,II;) < Tally(BB,sky,...,sk:): Once the voting phase is closed and
the public bulletin board is published together with skgg, each trustee T' € T
takes as input the public bulletin board BB, and its own secret key to produce
a partial proof II;, which is publicly disclosed.

— VerifyTally(BB, (II1, ..., II;)): (public) takes as input ¢ partial proofs associ-
ated to a given bulletin board BB and verifies that each individual proof II;
is correct, and uses all of them to decrypt. It outputs a final result » and L
in case of failure.

Correctness. In this paper, we only address correctness in the case where the
bulletin board is supposed to be honest. In particular, it is not allowed to stuff
itself or suppress valid ballots cast by honest users. Correctness for an e-voting
scheme states that, if users follow the protocol, then the tally leads to the result of
the election on the submitted votes. Considering an honest execution as follows:
Assume (sk, params = (pk,...)) « Setup(1*,t,¢,L) and p = #V = #I, where V
is the set of valid votes whose users’ identifiers lie in Z = {idy,...,id,}. Denote
as BB; the set of the first ¢ valid ballots cast corresponding to valid votes in V.
Then ProcessBB(BB;_1, b;, skgg) adds b; < Vote(pk, usk, upk,v;) in BB;_; for all
i < p and some id € T s.t. (usk,upk) < Register(1*,id). Also (ITy,...,I1;) —
Tally(BB,, sk) where VerifyTally(BBy, (IT1,...,II;)) =7 and r = p(v1,...,vp).

2.2 Security Model

Privacy. Several models for privacy have been introduced over the last years. In
this paper, we will use a simulation-based definition inspired from the definition
recently proposed in [5]. The challenger maintains two bulletin boards BB, and
BB;. It randomly chooses 8 € {0,1} and the adversary will be given access to
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BBg. The adversary can corrupt a subset of the trustees and the adversary can
vote for candidate of his choice and cast ballots. The tally is computed on the
real board in both worlds. At the end, it should not be able to tell the difference.
The procedures and oracles given as access to the adversary in the definitional
game are defined as follows:

— Init(1*,¢,£,L): This procedure is run at the beginning interactively by the
challenger and the adversary. The lists £y (published), £;, (kept by the chal-
lenger) of registered users and L¢y; of corrupted users are initialized at empty.
The adversary might corrupt a subset (< t) of trustees when running the
Setup algorithm and deviate from the algorithm specification. At the end, the
non-corrupted secret keys are derived as well as the BB’s secret key skgg and
the public parameters (¢, ¢, L, L4, V, pk) are published.

— ORegister(id): it checks whether an entry (id, ) appears in £j,. If yes, it aborts,
otherwise it runs the algorithm Register(1*,id). It updates £y and £, with
upkiy and (id, upk;y) respectively. It outputs upkiy.

— OCorruptU(id): it checks whether (id, ) appears in L¢yy. If yes, it returns the
corresponding usk;q. Otherwise it checks whether id has been registered using
L;,. If not, it calls ORegister on input id. It outputs (upkiy, uskiq) and updates
Ley with (id, upky, uskid).

— OVote(id, vo, v1): if some entry (id, upkiq, uskiq) does not exist in £;, or vy, v1 ¢
V, it halts. Else, it updates BB; «— BB; U {Vote(pk, upk;qy, uskig, v;)} for i =
0, 1. Here the adversary has access to the public view of BB and thus to the
associated ballot b.

— OCast(id, b): if upkyy ¢ Ly, it halts. Otherwise it parses b and checks its validity
w.r.t upk,y and the auxiliary information inside the submitted ballot using
skgg. If b passes the checks, it adds b to BB; for i =0, 1.

— OTally(): This procedure is run only once when the voting phase is closed. It runs
(I11,...,II;) < Tally(BByg,ski, . ..,sk) s.t. r = VerifyTally(BBy, (II1, . . ., II})).
For 8 = 0, it returns (II,...,II;). For 8 = 1, it returns (I1{,...,II]) «—
SimTally(ITy, . .., II;,info) s.t. ' = VerifyTally(BBy, (111, ..., II})), where info
includes auxiliary information known by the simulator SimTally, and thus not
the trustee’s private keys. If r # 7/ it halts.

And we define the experiment Expi{”r\i}’o’tﬁe()\) in Fig. 1.

Definition 2.1. We say that a voting protocol Vote has the ballot privacy prop-

erty if there exists an efficient simulator SimTally such that, for any PPT! adver-

sary A, it holds that ‘ Pr [Expi’é{)}r\i)'o’i(/\) = ﬁ] — 3 | is negligible in A.

Verifiability. We say that a voting protocol Vote is verifiable if it ensures that
the tally verification algorithm does not accept two different results for the same
view of the public bulletin board. This condition has to be verified even if in the

! Probabilistic Polynomial Timing.
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Experiment Exp”vo (\)

(pk, sk) « Setup(l*, t,¢,L)
5/ <_./4ORegister.,OCorruth,OVc::te,OCast,OTaIIy(BBﬁ)

Experiment Exp'fyq.(A)

(params, skeg, BB, (IT1, ..., I1;), (I}, ... II})) < ACRegister.OCorruptU
let » = VerifyTally(BB, (111, ..., 1))

let r" = VerifyTally(BB, (II1, . .., IT}))

if r #1 and 7’ #1 and 7 # r' return 1, else return 0

Fig. 1. The experiments Expfﬂi}’éé()\) and Exp’yyoie ()

presence of malicious adversary corrupting all users except A;. The adversary
still have access to the ORegister, OCorrupt oracles.
We define the experiment Exply'yoe(A) in Fig. 1.

Definition 2.2. We say that a voting protocol Vote is verifiable if for any PPT
adversary A, it holds that Succ*®"(A) = Pr [Exp'{yore(A) = 1] is negligible in A.

3 (Cryptographic) Building Blocks

Our scheme is built on the following post-quantum building blocks: Existentially
unforgeable Signatures, Non-malleable Encryption, LWE-based Homomorphic
Encryption, Trapdoors for lattices.

3.1 Signatures

The signature is used by the voter to sign the ballot. The security of the signature
scheme in our protocol should be based on post-quantum assumptions. In our
scheme, we rely on the hardness of finding short vectors in a lattice. One exam-
ple of lattice-based signature was proposed in [12] inspired by Lyubashevsky’s
scheme [19].

3.2 Scale-Invariant LWE Encryption

Our protocol strongly relies on the Learning With Errors problem, first intro-
duced by Regev in [23], and improved to obtain ring variants [20] and homomor-
phic encryption [4,7,8,13,16].

To ease the presentation, we use a normal form notation for LWE which cap-
tures its inherent scale-invariant property by working directly in the unit torus
T = R/Z, not only for the right member like in Regev’s original description [23],



252 I. Chillotti et al.

but also for the left member (i.e. no modulus g or other technical rounding). The
LWE secret is decomposed as bits. This separates the main hardness parame-
ters (i.e. entropy of secret and error rate) from implementation or optimization
technicalities (which takes the form of some unspecified, and not so important
discretization group). Furthermore, this representation is easy to obtain from
any classical representation, and will allow us to study homomorphic protocols
by reasoning directly on the (hidden) plaintext and the continuous noise.

Definition 3.1 (LWE Scale-Invariant Normal Form). Let o € R be a
noise parameter, (81, ..., ;) be a uniformly distributed binary secret in B", and
G C T" be a sufficiently dense? finite discretization group. We note LWE(s, o, G)
the following scale-invariant Learning with errors instance. A random LWE Sam-
ple from LWE(s,«,G) of a message u € T is mathematically defined as an
element (a,b) € G x T where: the left term a = (a1,..,a,) € G C T" is
(indistinguishable from) a uniform sample of G and the right term b is equal
to > s;a; + p+ e € T where e is statistically close from a zero-centered
continuous Gaussian sample of T of parameter «.

Definition 3.2 (Phase). We define the phase of a LWE sample (a,b) € T" x T
as ¢s((a,0)) =b—>20, sia; € T,

As a straightforward example, a classical sample (a,b) € Zy of integer LWE
with binary secret and binary noise, denoted as binLWE(n,q,1.4) in [6] or [13]
corresponds to the normal form sample (%, 2) € T™*1. In this case, the left mem-
ber is uniformly distributed over the discretized group G = (%Z/ Z)", and the
error rate v is &~ 1/q. If the secret is not binary, classical binary-decomposition
methods (see for instance the BitDecomp and PowersOfTwo methods from [7,
Sect. 3.2]) can quickly put the sample into normal form.

Security. The security of LWE therefore relies on the two other parameters:
the number n of bits or entropy in the secret, and the Gaussian error parameter
a. Figure3 in the appendix summarizes the practical secure choices for (n, @),
according to standard lattice reduction estimates (see [9]). In particular, for
a equal to 2719, 2730 or 2790 TWE is 128-bit secure as soon as n > 300,
800 and 1500 respectively, if no better attack than the lattice embedding exists.
Furthermore, for any a and n = £2(log(1/a)), LWE asymptotically benefits from
the worst-case to average case reduction (see [3,15,22,23] or [14] depending on
the shape of G).

The choice of the discretization group G controls the efficiency, but not the
security of LWE. Indeed, as a simple reformulation of the Modulus-dimension
reduction from [6, Corollaries 3.2 and 3.3, Theorem 4.1] or the Group switching
from [14, Lemma 6.3, Corollary 6.4], groups G C T™ can be swapped as long as

2 Technically speaking, the smoothing parameter of the real lattice G + Z™ must be
smaller than a/v/2n, as implied by [14] or [6].
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they are sufficiently dense to not interfere with the result of the phase (i.e.
decryption) function from Definition 3.1. Since this function is 1//n-lipschitzian
from T" — T, and has a precision «, it means that #G can always be chosen

as small as log,(#G) = O(nlogy(a)), which will be assumed in the remaining
of the paper.

3.3 LWE Symmetric Encryption

In Definition 3.1, we define LWE samples with continuous messages p € T. The
meaning of this message is natural for freshly generated LWE samples, but is
less obvious when a sample is obtained as a combination of other samples. In
all cases, the message u and resp. the noise parameter o of a LWE sample ¢ can
mathematically (and not computationally) be defined as the center and resp.
the Gaussian parameter of the distribution of its phase ¢4(c). Here, the prob-
ability space consists in re-sampling all Gaussian error terms of all fresh LWE
samples, and in resampling all random choices that were made in decomposition
or bootstrapping algorithms.

Given a security parameter A, the noise amplitude & is the smallest distance
such that |u — ¢s(c)| < @ with probability >1 — 27, It typically means a =
a - /M/m. For a fixed security parameter, amplitude and parameters are just
proportional one to each other. Bootstrapping and decryption operations are in
general easier to present in terms of amplitude rather than parameter, because
it better depicts the actual noise that we get.

To algorithmically extract the message from a LWE sample ¢ like in usual
decryption algorithms, we need an external information on the message: usually,
1 belongs to a discrete message space M of packing radius >a&. In this case,
the message of ¢ is computed by rounding its phase ¢4(c) to the closest point
in M. We note this LWEDecrypt  ;(c). And in this context, we will also write
LWESymEncrypt, , (1) the operation which consists in generating a random
LWE(s, a, G) sample of p € M.

3.4 Homomorphism

LWE samples satisfy a straightforward linear homomorphism property, which
follows from continuous Gaussian convolution:

Proposition 3.3 (Linear Homomorphism). Let c1, ..., ¢y be p independent

LWE samples of messages fu1, ...,y € T and noise parameters aq, ..., ap, and

let 1,...,2, € Z be p integer coefficients. Then the sample ¢ = > F_| x;¢; is

a valid encryption of the message p = > &_, x;p; with square noise parameter
2 £ NP 2.2

a® <Y o

If non-linear operations are needed, one may use the following theorem, which
can be viewed as an abstracted (and slightly generalized) version of the Boot-
strapping theorem of Ducas and Micciancio [13].
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Theorem 3.4 (General Bootstrapping Theorem). Let A denote a security
parameter. Let £ = LWE(s, 8,G) and &' = LWE(s’,a,G') be two instances of
LWE with respective n and n’-bit secrets s € B™ and s’ € B" . We note &
and (3 their respective noise amplitudes. Let M C T be an input message space
at distance d from {—i, i}, and N be a power of two at least of the order of

(An)/(d? — 32). If (n, B) and (n’, a/X\\/n(N + nlog(3))) are both \-bit secure
LWE parameters, then, there exists a bootstrapping key BEK[(s 5)—(s"a)] and a
polynomial bootstrapping algorithm which takes as input the bootstrapping key,
a sample from € and two points (uf, y) € T? of our choice, and simulates the
following algorithm without knowing the secrets:

Bootstrapp i (c, 11, o) =

LWESymEncrypt,, , o (11)  if d(ps(c), 3) < d(ps(c),0)
LWESymEncrypty; , ¢+ (1) otherwise.

Historically, the first bootstrapping notions were just designed to suppress
the input noise of a ciphertext, and optionally to switch its encryption key. But
from a plaintext point of view, bootstrapping was just the identity function. In
contrast, the bootstrapping function from Theorem 3.4, and which is implicitly
used by [13], evaluates the comparator operator (or mux) between its three
arguments.

[13] provides a concrete example of BK, 1), (, 1)) bootstrapping key for
any 500-bit key s, which has 128-bit security and whose bootstrapping algo-
rithm runs in about 700 sequential ms, and which we intend to reuse. They
use this key to fully-homomorphically simulate NAND gates between LWE sam-
ples of noise amplitude & = 1—16 and message space M = {0, i}, just by doing
HomNAND(cy, c2) = Bootstrapgy ((0, 3)-c1-c2, 1,0). However, for the final
step of our protocol, we will also need to bootstrap to a much lower noise ampli-
tude, which is not covered in [13], although their construction works with minor
adjustments.

Theorem 3.4 implies that the output of the bootstrapping function is indistin-
guishable from a fresh LWE sample of pu, or p}. In fact, it even seems to behave
like a good collision-resistant one-way function, especially if we re-randomize the
input sample by adding a random combination of the public key. However, for
verifiability purposes, one may also wish to control the randomness to reproduce
some computations. To simplify the analysis, we will therefore model bootstrap-
ping as a random oracle:

Assumption 3.5 (Bootstrapping as a Random Oracle). In the conditions
of Theorem 3.4, the Bootstrap function is assimilated to a random oracle which
returns a fresh LWE sample of p, where b = 1 iff. dist(p5(c), 3) < dist(ps(c),0).
In particular, the left term a’ is always indistinguishable from uniform over G’.

3.5 Publicly Verifiable Decryption for LWE

In the previous section, the LWE normal form with secret s € B™ has been
presented in a symmetric key manner. To allow public encryption, one usually
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publishes a polynomial number m = 2(nlog(1/a)) of random LWE samples of
the message 0 with noise parameter «. This is the public key pk € (G x T)™. The
public key can equivalently be written as a m x (n+1) matrix pk = [M|y] of T
where y = M s® + error. Public encryption of a message 1 € T can then achieved
by summing a random subset (of rows) of the public key, and adding the trivial
ciphertext (0, ) to the result. We call this operation LWEPubEncrypt,, (11).

In the protocol we will present, this allows a voter to encrypt his vote. Then
the BB can publicly use the bootstrapping theorem to homomorphically evaluate
whatever circuits produces the (encrypted) final result. And in the end, some
trustee must decrypt this result using the secret key. If decrypting a LWE cipher-
text on a discrete message space is easy, proving to everyone that the decryption
is correct without revealing anything on the LWE secret key requires some more
work.

To do so, we adopt a strategy which is borrowed from Lattice-based signa-
tures like GPV [15]. To allow a public decryption of ¢ € G x T, we reveal a
small integer combination (x1,...,%,,) of the public key pk which could have
been used to encrypt ¢, as in the following definition:

Definition 3.6 (Publicly Verifiable Ciphertext Trapdoor). Let LWE(s, «,
G) be a LWE instance, and pk = [M|y] € (G x T)™ a public key, and M a
discrete message space of packing radius >d. Let ¢ = (a,b) be a sample with
noise amplitude <§ and 8 = \/(d? — §2)/a?, we say that z = (z1,...,2,,) € Z™
is a ciphertext trapdoor of ¢ if ||z|| < fand if z - M = a in G.

Anyone who knows the public key can verify the correctness of the ciphertext
trapdoor. Furthermore, since the difference ¢ — x - pk is a trivial ciphertext (0, ")
of phase b’ of the same message u € M with noise amplitude <d, this reveals
the message in the same time.

Of course, finding a small combination of random group elements which is
close to some target is related to the subset sum, or the SIS family of problems,
which are hard in average. Luckily, the framework proposed in [21], and which
we briefly summarize in the next paragraph, introduces an efficient trapdoor
solution.

Definition 3.7 (Master Trapdoor as in Definition5.2 of [21]). Let
LWE(s, o, G) be a A-bit secure instance of LWE. A Gadget Gad € G™' is some
publicly known superincreasing generating family of G, such that any element
a € G can be decomposed as a small (or binary) linear combination of Gad. Let A
be a uniformly distributed family in G~ ™, and let R be a m’ x (m-m’) integer
matrix with (small) subGaussian entries. We define the matrix M = % egm
where A’ = Gad — R- A. We call R a master trapdoor, and its corresponding
public key is pk € (G x T)™, whose i-th row is pk;, = (M;|M; - s + e;) for some
Gaussian noise e; of parameter . The master trapdoor verifies the condition
Gad = [R| Idy—m] - M and the parameters m,m’,m —m’ = O(logy(#G)).
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Theorem 3.8 (Adapted from Theorem 5.1 of [21]). Let ¢ € G x T be a
LWE(s, 8, G) sample on a message space of packing radius >26, R a master trap-
door of parameter v and pk an associated public key with noise <&/ log(#G)'.
Given ¢ and R, one may efficiently compute a ciphertext trapdoor x for ¢ of
norm O(Blog(#G)'5). This trapdoor can decrypt ¢, as in Definition 3.6. Fur-
thermore, the distribution of the ciphertext trapdoors of c is statistically close to
some discrete Gaussian distribution on Z™, of parameter O(Blog(#G)°%%), and
thus, does not reveal any information about R.

Like square roots oracles for RSA moduli, ciphertext trapdoors are trivially
vulnerable to chosen ciphertext attacks, so they should only be invoked on the
output of some good hash function, or some random oracle. It is the case for
all provable instantiations of trapdoor-based lattice signatures like GPV [15] or
[21], and in this paper, we will use the output of the bootstrapping algorithm,
which can also be viewed as a random oracle by Assumption 3.5.

3.6 Concatenated LWE, with Distributed Decryption

To prevent a single authority from decrypting individual ballots, or to guaranty
privacy in the long term, even if all but one trustee leak their private key, we
need to split the LWE secret key among multiple trustees. We do not propose a
threshold decryption like Shamir’s secret sharing scheme, but instead, a simple
concatenation of LWE systems where all the trustees must do their part of the
decryption, and any cheater is publicly detected. This requirement seems suffi-
cient for an e-voting scheme, and has the additional benefit of being achievable
with only two trustees.

Let LWE(s;, o, G;) for i € [1,¢] be A-bit secure instances of LWE, and pk; =
[M;|y;] € (G x T)™ be the corresponding public keys with associated master
trapdoors R;. We call concatenated LWE the LWE instance whose private key

is s = (s1]...|st), discretization group is G = G X - -+ X Gy, and public key is
M1 00 Y

Pk=1 0|0 (1)
0 0 Mt Y,

To decrypt such LWE ciphertext (with publicly verifiable decryption) ¢ =
(a1]...]at,b) € G x T, each of the ¢ trustee independently use his master trap-
door R; to provide a ciphertext trapdoor I1; of (a;,0), and like in the previous
section, the concatenated ciphertext trapdoor IT = (11| - - |II;) is a ciphertext-
trapdoor for c.

Finally, note that even if all trustees leak their private keys except si,R;
(we take 1 for simplicity), then decrypting ¢ rewrites in decrypting the
LWE(s1,a',G1) ciphertext (a1,b) where b = b — 3/, a; - ;. This is by
definition still A-bit secure. In other words, even in case of collusions between
the trustees, the whole scheme remains secure as long as one trustee is honest.
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4 Detailed Description of Our E-voting Protocol

4.1 Setup Phase

The bulletin board manager generates a pair of keys (pkgg, sksg) =KeyGenEgg (1*)
and publishes pkgg.

The trustees setup the concatenated LWE scheme presented in Sect. 3.6: each
trustee generates its own separate LWE secret key s; € B", its own master
trapdoor R;, and a corresponding public key pk; € (G x T)™.

Thus, the secret key sk; of each trustee consists in R; and s;. Without reveal-
ing any information on s;, they must provide a proof that the public key pk; is
indeed composed of LWE(s;, ) samples of 0, because it is a requirement for the
correctness of the decryption with ciphertext trapdoors. To do so, the trustees
may for instance use the NIZK proof defined in [18, Sect. 2.2]. Once the existence
of s; is established, the trustees do not necessarily need to prove that they know
the secrets s; or R;, although, the simple fact that they can output valid cipher-
text trapdoors prove it anyways, by standard LWE-to-SIS or decision-to-search
reduction arguments.

The main public key pk is the tensor product defined in Eq. (1).

The main secret key s = (s1,..., 8¢) must be secure for low noise rates, like
O(1/L*?), which means that the number of secret bits is larger than usual. To
perform homomorphic operations efficiently, the trustees define two other secret
keys s() and s("™ for a noise rate 1 /16 and their corresponding public key pk(f )
and pk(m) (they may still use a concatenated scheme, although this time, they
don’t need a master trapdoor for that).

Finally, they provide three bootstrapping keys: BK; := BK[(s(f),%)H(s("‘),i)]’
BK; := BK[(S(m)&)_}(s(m%%ﬁ)], and a larger one for low noise amplitude BK3 :=
BK[(S(m),%)—%S,ﬁ)]' Since a bootstrapping key essentially consists in a public
LWE encryption of each individual bit of the private key, each trustee can inde-
pendently provide their part of the bootstrapping keys. Bootstrapping with BK;
or BK» can be done in less than 700ms using the implementation of [13]. BK3 uses
secrets which are typically twice as large, and since the bootstrapping is essentially
quartic in n, one should expect a slowdown by some constant factor ~ 16.

4.2 Voter Registration

Register(1*,id): The authority A; runs (upky, uskig) « KeyGenS(1%). Its adds
upkiq in £y and outputs (upkig, uskiq).

4.3 Voting Phase

In our scheme, we suppose that the number of candidates ¢ = 2* is a power of
two. If it is not the case, we can always add null candidates. Then, if we choose a
random value for the vote, no candidate will be favorite over the others. A valid
vote v is thus assimilated to an integer between 0 and ¢ — 1.
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Vote(pk, usk, upk,v): each user computes the binary decomposition
(Vo yvp—1) € {0,1}F st v = 25;3 v;27. Let ; denote 1v; € T, he encrypts
each bit as ¢; = LWEPubEncrypt,, s (9;) with noise amplitude <. It boot-

straps the cs as follow: c; = Bootstrapp, (¢j, %,O). It computes aux =
Encgs(pkgg, (co, - - -, ck—1)||upk). It returns the final ballot b = (content, o),
where content = (aux, upk, (¢g, ..., ¢’k—1),num) and o = Sign(usk, content) and

where num is the version number of the ballot for the revote policy?.

4.4 Processing a Ballot in BB

All the procedures performed by the BB and described in this section are sum-
marized in Fig. 2.

Validity Checks on a Ballot. ProcessBB(BB, b, skgg): upon reception of a bal-
lot b, it parses it as (content, o), with content = (aux, upk, (¢g, ..., ¢ k—1), num).
BB verifies that upk € £, and checks whether VerifyS(upk;y, content).
It verifies that each ¢; € G x T. It computes (co,...,cr_1)|lupk’ =
Decgg(skpg,aux). It checks whether upk’ == upk and whether c} =

Bootstrappz ., (¢;, %,O) for all 7 = 0,...,k — 1. Then, it checks the revote pol-
icy with the version number num and adds the ballot if all the validity checks
passed. Note that a syntaxical check on the ¢;’s is enough. Note also that unlike
classical e-voting protocol, no semantic check or zero-knowledge proof is needed
at this step, since all binary message are valid choices.

BB Homomorphic Operation. Then, BB applies a sequence of public homo-
morphic operations on the encrypted vote (cj,...,c}). These homomorphic
operations do not require the presence of the voter, and can therefore be per-
formed offline by the cloud. To simplify, we will just describe what happens on
the cleartext.

1. Pre-Bootstrapping. Boo’cstrap)_:;KZ(c;-7 i,O) is applied on each c;- to cancel its

uncontrolled input noise and reduce it to 1—16, and also to reexpress its content on

the {0, i} message space, which is suitable for boolean homomorphic operations.

2. Homomorphic binary expansion. In order to compute the sum of the votes
(homomorphically), BB transforms the vector 4 = (y, ..., 9-1) € {0, 1}"* into
its characteristic vector W = %(wo, coowe—1) = (0,...,0, i, 0,...,0) of length ¢
(number of the possible choices of votes) with a % at position v. This transfor-
mation is very easy and, for every h of binary decomposition h = Zf:_ol hi2%, wy,
corresponds to this boolean term:

3 The revote policy consists in accepting the last vote sent for upk: BB accepts to
overwrite a ballot for upk iff the new version number is strictly larger than the
previous one.
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wp(v) = /\ 7;\ A /\ v;

i€[0,k—1] i€[0,k—1]

i= h;=1

The formula seems complicated, but it is just a conjunction of k variables v; or
their negation (k = log, ¢ is in general smaller than 5 in typical elections).

These conjunctions can be easily evaluated on ciphertexts using these homo-
morphic gates, keeping in mind that Bootstrappy, runs in less than 700 ms, as
n [13]:

HomAND(cy, c2) = Bootstrappy, ((0, —3) + ¢1 + c2, 1,0)
HomANDNot(c1, c2) = Bootstrapgy, ((0, 3) + ¢1 — ¢z, 1,0)
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3. Generalized Bootstrapping. BB then uses the main bootstrapping key BK3 to
convert these ¢ ciphertexts into a new ciphertext of (0,...,0, %,O, ...,0) with
noise O(L~3/2).

This consists in applying Bootstrapgg,, ((0, §)+¢, T,0) to each of the £ cipher-
texts.

4. Homomorphic addition. At the end of the voting phase, BB sums (homomor-
phically) all ciphertexts, which yields to the final LWE ciphertexts (Cy, . .., Cy_1)
of (B2, ..., ™), with noise O(L™1). No bootstrapping is needed for this step, it
just uses the standard addition on ciphertexts.

4.5 Tallying and Verification

Denote as (Cy, . ..,Cp—_1) the final ciphertext processed by BB. Each LWE sam-
ple C; encodes the message %X with noise amplitude O(1/L), where n; is the
number of votes for candidate j.

Tally(BB, sk = (ski,...,sk)): for each Cj, the trustees independently perform
the distributed decryption described in Sect. 3.6, and publish a ciphertext trap-
door I, ; € Z™ (fori=1,...,t and j = 0,...,£ — 1) as in Definition 3.6, which
is revealed to everyone.

VerifyTally(BB, (II1, ..., I1;)): given the main public key pk, anyone is able to
check the validity of the ciphertext trapdoors. If a trapdoor II; ; is invalid, it pub-
licly proves that the i-th trustee is not honest and in this case VerifyTally returns
L. If all the trapdoors are valid, anyone can use (I3 j, ..., II; ;) to decrypt Cj,
and thus, recover n; for all j, which gives the number of votes for the candi-
date j. This gives the result of the election. And VerifyTally returns the result
(no, ..., ne—1).

5 Correctness and Security Analysis

5.1 Correctness and Verifiability

In order to prove verifiability and correctness, we show that our scheme verifies
this more general theorem.

Theorem 5.1 (Intermediate theorem for proving Verifiability and Cor-
rectness). Let pk be a wvalid e-voting public key (this includes also pk(f),
pk(m), and the bootstrapping keys BKy, BKs>, BK3 with the parameters defined
in Sect. 4.1, together with their respective NIZK proofs of validity). Let S be
an ezistentially unforgeable scheme and £ a mon-malleable encryption scheme
both quantum resistant. Let BB be a sequence of bits that can syntazically be
interpreted as the public view of a bulletin board after the end of the wvoting
phase: i.e. a BB key pair (skeg, pkgg), @ list [b1,...,b,] of ballots where each
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= (aux, upk, ¢’, num, o) passed the verification check from ProcessBB and the

whole sequence of public homomorphic operations from Sect. 4.4 until the final
ciphertexts. Then, the following facts holds with overwhelming probability

1.

For each b; € BB, let (upk, usk) be the credential pair associated to this ballot,
there exists a unique v; € V = [0, — 1] such that b; can be expressed as
Vote(pk, upk, usk, v;)*.

If BB was produced in less than 2* elementary operations, then each ballot b;
has been generated with the knowledge of its associated usk.

The final £ ciphertexts after all the homomorphic operations in BB are
LWE(sk, 1/L*> G) samples of the plaintext result = p(v1,...,vp).

For all integer matriz (ITy,...,II;) € Z%™, VerifyTally(BB, IIy, ..., II}) is
equal to either r or L.

The theorem holds even if one does not perform the check on the auziliary infor-
mation, and thus, providing (skes, pkgg) s optional.

Proof (Sketch). Suppose that the hypothesis of the theorem are satisfied.

1.

Let b € BB be a ballot. By construction it can be parsed as
b; = (aux,upk,c’,num, o), and since b; passes the tests from ProcessBB,
Dec(skgg,aux) = (upk,c) where ¢’ = Bootstrapgy, (¢, 1,0). Let ¢” =
Bootstrap(BK>, ¢’, %7 0) be the result of the pre-bootstrapping of ¢. Then v;
is the integer whose binary decomposition is m = 4-LWEDecryptg () o, 1((c))-
Then by Theorem 3.4 on the bootstrapping, ¢ encodes necessarily %m with
noise amplitude i, and thus, b; can be expressed as Vote(pk, upk, usk,v;).
Reciprocally, if b; is expressed as Vote(pk, upk, usk, ), then we get back the
same v; = x since we are just encrypting, bootstrapping twice and decrypting.
This proves unicity.

. Each ballot b; contains a signature o, which cannot be forged in less than 2*

elementary operations without the private key usk assuming S is secure.

From the plaintext point of view, computing the binary expansion to trans-
form the vote into its characteristic vector and summing these characteristic
vectors (over L) yields the correct result. By Theorem 3.4, the same opera-
tions are correct on the ciphertexts, which proves that the ciphertexts that are
decrypted by the Tally encrypt the correct election result r = p(v1,...,vp).

. Let (IT,,...,II;) € Z'*™ be an integer matrix. If VerifyTally(BB, Iy, ..., II;)

is not L, then IIy,...,II; form ciphertexts trapdoors for the final
ciphertexts, which satisfy the conditions of Definition3.6. Therefore,
VerifyTally(BB, II1, ..., I1;) is the decryption of the final ciphertexts, which
are the election result » = p(vy,...,v,) by point 3.

Corollary 1 (Correctness). Assuming that the signature scheme S is exis-
tentially unforgeable and £ is a non-malleable encryption scheme and that the
public homomorphic operations performed by the BB are correct, then our pro-
tocol is Correct.

4

the v; exists and is unique, but b; might have been generated without its knowledge,
or more generally, without calling the Vote procedure.
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Proof. The Correctness is a direct consequence of Theorem 5.1, in the particular
case where the public view of BB is generated by honest voters which follow the
protocol, and I14,..., II; are generated by the Tally function.

Corollary 2 (Verifiability). Assuming that BB accepts only valid ballots and
that all other operations performed by the BB are public, then our protocol is
verifiable in the sense of Definition 2.2.

Proof. The Verifiability is a direct consequence of point 4 of Theorem5.1. In
fact, it states that the sole possible results of VerifyTally can be r = p(v1,...,vp)
or L. This implies that the result of the game defined in Fig. 1 is equal to 0 with
overwhelming probability.

5.2 Privacy

Theorem 5.2. Assuming Assumption 3.5 holds, our protocol verifies Privacy in
the sense of Definition 2.1.

Proof (Sketch). The challenger sets two empty bulletin boards BBy and BB,
picks a random bit 8. The adversary may choose at most k <t — 1 LWE secrets
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S$1,-.-,8k—1 € B™ and the challenger chooses the remaining ¢t — k secrets ran-
domly and independently (even from the ones chosen by the adversary). As long
as one trustee’s secret key part is uniformly generated and unknown from the
adversary, the three LWE instances generated in the Setup are A-bit secure.
All the oracles ORegister, OCorrupt, OCast, Tally and VerifyTally follow the nor-
mal protocol described in Sect. 4. The OVote oracle follows the protocol to vote
vo on BBy and v; on BBy, but it chooses the output of the random oracle®
Bootstrapg, function on BB; so that it uses exactly the same left-hand term
for corresponding samples in BBy and BB;. Since the left term of a LWE sam-
ple is uniform in G, this is consistent with the expected output distribution of
Bootstrapg ., . Finally, SimTally is simply the identity function, since all LWE
samples in BBy and BB; have the same left term, and the ciphertext trapdoors
only depends on it. The only oracle which depends on a secret that is unknown
to the adversary is Tally. We already know from Theorem 3.8 that the ciphertext
trapdoors of the tally do not leak any information on the master trapdoors, nor
on the LWE secret. It remains to show that the result of the election does not
bring any new information to the adversary. Obviously, the attacker does not get
any information from OVote, since he knows the ballot plaintexts. And finally,
our auxiliary information prevents the adversary from using public data in BBg
to craft a valid ballot for OCast. O

6 Discussion and Conclusion

In this paper, we presented a new post quantum e-voting protocol. Our new
scheme is simple and the procedures are transparent. The construction exploits
the versality of LWE-based homomorphic encryption to build a scheme reaching
all the security properties, without relying on zero knowledge proofs for proving
the validity of a vote, nor correct decryption. Instead, we make use of ciphertext
trapdoors and rely on a new way to distribute LWE decryption which is not
based on Shamir secret sharing to ensure the public verifiability of the decryp-
tion of the final result. We also introduce a new approach for preventing replay
attacks, by using the one-wayness of the bootstrapping letting the user send some
encrypted auxiliary information. We leave as a possible direction for future work
the extension of our model to a possibly dishonest bulletin board. Lastly, our
scheme is a first instantiation of an LWE-based e-voting protocol and we leave as
an open problem the improvement of our scheme that would make lattice-based
e-voting scheme close to practice.

Acknowledgments. This work has been supported in part Fonds Unique Inter-
ministériel (FUI)through the CRYPTOCOMP project and the EIT Digital project
HC@QWORKS.

5 This works well in the random oracle model as in Assumption 3.5. Getting it in the
standard model remains open.
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Appendix

Assuming a medium-scale election with L = 2000 voters, the main partial keys
should allow a 1/L'5 ~ 2717 noise parameter. Taking into account the overhead
for publicly verifiable ciphertext trapdoors and bootstrapping key, the overall
scheme can easily be instantiated with at most 2000-bit secrets.
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