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ABSTRACT

Real-world elections often require threshold cryptosystems
so that any ¢ out of £ trustees can proceed to tallying. This
is required to protect the confidentiality of the voters’ votes
against curious authorities (at least ¢t + 1 trustees must col-
lude to learn individual votes) as well as to increase the
robustness of the election (in case some trustees become
unavailable, ¢ + 1 trustees suffice to compute the election
result). We describe a fully distributed (with no dealer)
threshold cryptosystem suitable for the Helios voting system
(in particular, suitable to partial decryption), and prove it
secure under the Decisional Diffie-Hellman assumption. Sec-
ondly, we propose a fully distributed variant of Helios, that
allows for arbitrary threshold parameters ¢, ¢, together with
a proof of ballot privacy when used for suffrage elections.
Our modification of Helios can be seen as revision of the sem-
inal multi-authority election system from Cramer, Gennaro
and Schoenmakers, upon which the original Helios system is
based. As such, our work implies, to our knowledge, the first
formal proof of ballot privacy for the scheme by Cramer et
al. Thirdly, we provide the first open-source implementation
of Helios with a fully distributed key generation setup.
Keywords: voting protocols, Helios, ballot privacy, fully
distributed cryptosystem, implementation.

1. INTRODUCTION

Ideally, a voting system should be both private and verifi-
able. Privacy ensures that no one knows that a certain voter
has voted in a particular way, and verifiability ensures that
everyone can trust the result, without having to rely on some
authorities. One leading voting scheme that achieves both
privacy and verifiability is Helios [4], based on a classical
voting system proposed by Cramer et al [17] with variants
proposed by Benaloh [6]. Helios is an open-source voting
system that has been used several times to run real-world
elections, including the election of the president of the Uni-
versity of Louvain-La-Neuve and the election of the 2010,
2011 and 2012 new board directors of the International As-
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sociation for Cryptographic Research (IACR) [1]. Helios has
been shown to ensure ballot privacy for successively stronger
notions of privacy and more accurate implementations [15,
7,9].

Yet none of the existing ballot privacy proofs [15, 7, 9, 11]
for Helios considers a fully distributed setup phase with an
arbitrary threshold ¢ in the total number of trustees ¢. That
is, a setup phase where trustees generate the election pub-
lic and secret keys without a trusted dealer while affording
an arbitrary t-out-of-¢ threshold parameters selection. We
will refer to any variant of Helios enjoying this property as
a fully distributed Helios, for short. Such a property is cru-
cial towards achieving a reasonable level of confidentiality
for the voters’ votes and for the robustness of the election.
Moreover, we are not aware of any publicly available open-
source implementation of Helios enjoying a fully distributed
key generation phase. The aim of this work is to give a
solution to these two issues.

Our contributions. In order to build Helios upon the
lightest and simplest fully distributed semantically secure
cryptosystem, we show in Section 3 that the well-known
Pedersen’s [38] Distributed Key Generation (DKG) proto-
col applied to ElGamal can be proven semantically secure
under the Decision Diffie-Hellman assumption, even if the
resulting public key can not be guaranteed to be uniformly
distributed at random [26, 28]. We do so by employing the
techniques used in [27, 3, 28] to prove a similar result for
fully distributed Schnorr signatures in the Random Oracle
Model. Our analysis shows that those techniques can be
safely used in scenarios other than digital signatures, where
the adversary solves a decisional problem (in contrast to a
search problem for digital signatures) and in the standard
model (in contrast to the random oracle model).

We go further by providing the first detailed proof of bal-
lot privacy for Helios affording arbitrary threshold without
trusted dealer. The most accomplished proof of privacy for
Helios-like voting schemes can be found in [9]. It proves pri-
vacy for the actual ElGamal scheme used in Helios and the
actual tally function (that reveals partial decryption shares).
It however abstracts away the distribution of the secret keys
of the trustees that perform the tally and does not consider
threshold decryption. In practice, threshold decryption is
mandatory. Typically, three authorities detain the decryp-
tion shares and two among three authorities suffice, and are
necessary, to perform the tally. This is crucial for the ro-
bustness of the election.

We note that the currently implemented version of He-
lios is subject to an attack against privacy [15]: an attacker



may (re)submit the ballot of an honest voter on his behalf
without knowing the actual vote. A provably secure fix [7]
consists in invalidating ballots that contain ciphertexts al-
ready present in the bulletin board, this is called ciphertext
weeding. Interestingly, our fully distributed Helios avoids
ciphertext weeding: we can provably avoid the submission
of duplicated ballots by simply hashing the voter’s identity
in the non-interactive zero-knowledge proofs for ciphertext
well-formedness used in Helios (wich in turn are obtained via
the Fiat-Shamir transformation [20]). We provide a variant
of this technique where identities are replaced by nonces;
this variant is compliant with countries where identities can-
not appear beside ballots, does not harm everlasting privacy
and it might be incorporated in forthcoming versions of the
official Helios system (see end of Section 4). Checking for
duplicates is therefore alleviated to checking that the same
identity (or credential thereof) does not appear twice in the
board, a test which is needed anyway to avoid the same
voter casting more than one ballot. Thus the complexity of
the test depends only on the size of the number of voters.
Moreover, election servers are typically replicated to handle
more requests and to ensure better availability. Two repli-
cated servers may therefore independently accept two ballots
that contain duplicated encryption, allowing to mount the
previously mentioned attack.

We have implemented our fully distributed version of He-
lios. Our implementation includes the suppression of cipher-
text weeding and the fully distributed threshold cryptosys-
tem. The code is openly accessible [29]. To our knowledge
this is the first publicly available implementation of a variant
of Helios using a fully distributed threshold cryptosystem.

Related work. In addition to Helios, several private and
verifiable voting schemes have been proposed, including e.g.
Civitas [14] and FOO [22]. Helios is currently the most
usable (and used) remote voting scheme in practice.

The notion of ballot privacy or ballot secrecy has been
extensively studied. Several privacy definitions for voting
schemes have been proposed, from ballot privacy [30, 34,
7, 8, 9, 11] to coercion-resistance [31, 23, 33] and applied
to voting schemes: Civitas has been shown to be coercion-
resistant [14], while Helios has been shown to ensure ballot
and vote privacy [15, 7, 9, §].

There is an abundant literature regarding discrete log-
based threshold cryptosystems (see e.g. [21, 36, 39, 12, 35])
but most of it assumes a trusted dealer, which amounts,
in the case of voting protocols, to place the privacy of the
election in the hands of a single authority. Propositions of
distributed key generation (DKG) protocols with no dealer
exist, such as [26, 41, 3, 28]. They focus on ensuring that
the public key as output by the protocol is uniformly dis-
tributed as long as at least ¢ + 1 honest parties cooperate.
Compared to the classical DKG scheme of Pedersen [38],
which was shown in [26] to output biased public keys in the
presence of active adversaries, those stronger DKG protocols
are more involved and expensive. Regarding voting systems
with arbitrary threshold parameters, [19] describes an (non
publicly-available) implementation of Civitas with a fully-
distributed threshold cryptosystem using the distributed key
generation protocol by Gennaro et al. [26]. Compared to
ours, the latter key generation protocol is twice as complex.

As noted before, the currently implemented version of He-
lios is subject to an attack against privacy [15]: an attacker
may (re)submit the ballot of an honest voter on his behalf

without knowing the actual vote. The result of the election
then counts the honest vote twice, which provides a bias to
the attacker. In particular, in the case of three voters, the at-
tacker knows the vote of the voter under attack. A provably
secure fix [7] consists in invalidating ballots that contain ci-
phertexts already present in the bulletin board, this is called
ciphertext weeding. This fix is conceptually simple but very
heavy in practice. Indeed, upon receiving a ballot, the elec-
tion server would need to access to the bulletin board and
test whether any of the atomic ciphertexts that compose the
ballot already appears in the bulletin board. The complex-
ity of the verification test would therefore be a function of
the number of voters times the number of candidates.

Helios [4] is in fact an implementation and simplifica-
tion of a seminal work on multi-authority voting systems
by Cramer, Gennaro and Schoenmakers [17]. The fully-
distributed IND-CPA scheme that we propose and analyze
in Section 3 was already proposed in [25, 17], but no formal
proof of semantic security was given. Our fully-distributed
version of Helios resembles almost exactly the voting scheme
given in [17]. Thus our work can in particular be seen as a
revision of the scheme by Cramer et al. inside a contempo-
rary frame that validates all the security statements claimed
by the authors back in 1997. We stress that in the original
publication no security definitions nor formal proofs were
given. Interestingly, [17] already proposed to avoid ballots
duplication by adding the voter’s identity id to the hash
function in the NIZK proofs. This technique is sound, as
proven in [24, 30] and indirectly here.

2. SYNTAX AND BALLOT PRIVACY FOR
A VOTING SYSTEM

Election systems typically involve several entities:

1. Registrars: Denoted by R = {Ri,...,Rny}, is a set of
entities responsible for registering voters.

2. Trustees: Denoted by (71,...,7;), these authorities
are in charge of producing the public and secret param-
eters of the election. They are responsible for tallying
and publishing a final result.

3. Voters: The eligible voters (Vi, ..., V;) are the entities
participating in a given election administered by R.
We let id; be the public identifier of V.

4. Bulletin board manager: It is responsible for process-
ing ballots and storing valid ballots in the bulletin
board BB.

In an election system with interactive setup and tallying,
the ¢ trustees can communicate via pairwise private authen-
ticated channels. They have access to a commonly accessible
append-only memory where every trustee can post messages,
and these posts can be traced back to its sender. A setup
interaction is then run between the ¢ trustees to build an
election public key pk and corresponding private key sk.
Later, a tally interaction computes the final outcome result
and a proof of valid tabulation II.

We continue by describing the syntax for an electronic
voting protocol that we will be using throughout the pa-
per. A voting protocol V = (Setup, Register, Vote, VerifyVote,
Validate, Box, Tally, Verify) consists of eight algorithms whose
syntax is as follows:



Setup(1*,£) is a possibly interactive algorithm run by ¢
trustees. It takes as inputs the security parameter 1*
and the total number £ of trustees. It outputs an elec-
tion public key pk, which includes the description of
the set of admissible votes V; a list of secret keys sk.
Each trustee only gets to see some part of the secret
keys. We assume pk to be an implicit input of the
remaining algorithms.

Register(1*,id) captures the registration phase that is in-
tuitively inherent to any voting system. On inputs the
security parameter 1* and a unique identifier id for the
user, it outputs the secret part of the credential usk;q
and the public part of the credential upk;;. We assume
the list L = {upk,,} of legitimate public credentials to
be included in the public key pk. If no credentials are
needed, upk;, is set to be ¢d and usk;q is empty.

Vote(id, upk, usk, v) is used by voter id to cast his choice
v € V for the election. It outputs a ballot b, which
may/may not include the identifier id and or upk,,.

VerifyVote(BB, id, upk, usk, b) is a typically light verification
algorithm intended to the voters, for checking that
their ballots will be included in the tally. It takes as
input the bulletin board BB, a ballot b, and the voter’s
credentials usk, upk and performs some validity checks,
returning accept or reject.

Validate(b) takes as input a ballot b and returns accept or
reject for well/ill-formed ballots.

Box(BB, b) takes as inputs the bulletin board BB and a bal-
lot b. If Validate(b) accepts, it adds b to BB; otherwise,
it lets BB unchanged.

Tally(BB, sk) takes as input BB = {b1,...,b,} and the se-
cret key sk, where 7 is the number of ballots cast. It
outputs the tally result, together with a proof of correct
tabulation II. Possibly, result = invalid, meaning the
election has been declared invalid.

Verify (BB, result, IT) takes as input the bulletin board BB,
and a result/proof pair (result, II) and checks whether
IT is a valid proof of correct tallying for result. It re-
turns accept if so; otherwise it returns reject.

Next we define the minimal procedural requirement, called
correctness, that every such voting protocol must satisfy. It
simply requires that honestly cast ballots are accepted to the
BB (and pass the verification checks) and that, in an hon-
est setting, the tally procedure always yields the expected
outcome (that is, the result function). A voting scheme is
correct if for ¢ = 1 to 7 it holds: (1) Box(BB,b;) = BBU{b;}
where we let b; « Vote(id;, upk;,usk;,v;) for some v; €
V; (2) Validate(b;) = accept and VerifyVote(Box(BB,b;),
upk,, usk;, b;) = accept; (3) Tally({b1,...,b-},sk) outputs
(P(V1, -+, v7), 1D (4) Verify({bi, ., br }, plvs, -, v,), TT) =
accept. The above properties can be relaxed to hold only
with overwhelming probability. Possibly, one might need
to include additional trust assumptions in the consistency
definition. For instance, if the voting scheme has threshold
parameters (t, ), then it is likely that correctness can only
be guaranteed if at least t + 1 > [£/2] trustees cooperate to
compute Tally.

2.1 Ballot privacy

Ballot privacy requires that any coalition of at most ¢
trustees together with any coalition of corrupted users can-
not infer information from ballots cast by honest voters, even
after the election result is announced. In the following, we
extend the computational game-based definition from [9] in
two ways: we take into account a fully distributed key gen-
eration phase with arbitrary threshold; we take into consid-
eration the necessary voters’ registration phase.

Formally, two experiments are considered: one in which
tally is left to a simulator and another one in which tally
is done as normal. In both of them, the adversary acts
on behalf of corrupted trustees and users. As usual in the
electronic voting protocol literature, we assume static cor-
ruption of the trustees; however users can be adaptively cor-
rupted.

The challenger maintains two bulletin boards BBy and

BB;. It randomly chooses 3 E {0,1}, and the adversary will
be given access to the left board if 3 = 0, or the right board
if 8 = 1. Thus the board BB;_g is invisible to the adversary.
The adversary is given access to oracles Oregister, OcorruptU
and OvotelLR as follows:

Oregister(id): invokes algorithm Register(),id), it returns
upk,, and keeps usk;q secret. It also updates given lists
L = LU {upk,;} and U =U U {(id, upk, 4, usksa)}.

OcorruptU(id): firstly, it checks if an entry (id,x,x) ap-
pears in U; if not, it halts. Else, it outputs the creden-
tial’s secret key usk;q associated to upk;,; and updates CU =
CU U {(id, upk,,)}.

OvotelLR(id, vo,v1) : if id was previously queried, or upk,, ¢
UN\CU, or vog ¢ V, or v1 ¢ V, it halts. Else, it updates
BBy <« BBoU{Vote(id,vo)} and BB1 «— BB;U{Vote(id,v1)}.

We define two procedures Init and Main that help defining
the view of the adversary in the ballot privacy game.

e Init(\, ¢): it is run interactively by a challenger and
the adversary. The challenger starts by picking a ran-
dom bit §, and it sets up two bulletin boards BBy
and BB, initialized at empty. The adversary is given
access to BBg. The lists L,U,CU are initialized at
empty. In a first phase, the adversary is given access to
Oregister(). At the end of this phase, the lists L,U,CU
have been populated and will be fixed for the rest of the
game. In a second phase, the setup algorithm is run
and (pk,sk) < Setup(1*,t,£). Eventually we might
allow the adversary to corrupt a subset of trustees.
In that case, when running Setup(), the adversary will
control the corrupted trustees (in particular the adver-
sary might deviate from the algorithm specification).
At the end of this second phase, the public key pk is
published, and it includes the set of admissible choices
V and the list of public credentials L. The adversary
ends with knowledge of the secret keys belonging to
the corrupted trustees, whenever they are defined.

e Main(BBo, BB1, pk,sk): If 8 = 0, the challenger sets
(result,II) < Tally(BBo,sk). If 3 = 1, the challenger
sets (result,II") « Tally(BBo,sk) and IT « SimTally(
BBy, BB1, pk, info), where info contains any informa-
tion known to the challenger. The output is (result, II,



B'), where 3’ is the guess for 3 made by the adversary

A. If the adversary is allowed to corrupt a subset of

trustees, then Tally and SimTally are jointly run be-

tween the challenger and the adversary, the challenger

playing the role of the honest trustees and the adver-

sary playing the role of the corrupted trustees.
Experiment Exp®"(X)

(1) Init(A) — (pk,sk, 3)

(2) AOcorruth(),OvoteLR()(BBB) N (BBg, BBlfg)

(3) Main(BBg, BB+, pk, sk) — (result, II, ")
return 8=/

Figure 1: Ballot privacy

If 8 =1 then the announced result will likely not match
the result corresponding to the ballots on the board. Ballot
privacy asks that an adversary cannot distinguish the real
votes contained in the ballots from any other selection of
votes.

Formally, we say that a voting protocol V has ballot pri-
vacy if there exists an efficient simulator SimTally such that
no PPT algorithm can tell whether it interacts with the real
tally algorithm or a simulator, i.e. there is a negligible func-
tion v(A) such that, for any PPT adversary A, it holds that

SuccP™(A) = ’ Pr [Expf:v()\) = 1] —-1/2 ’ < v(\), where

priv

Exp"" is defined in Figure 1.
3. A FULLY DISTRIBUTED THRESHOLD

CRYPTOSYSTEM FROM DECISION DIF-

FIE-HELLMAN

Our aim is to build a Helios-like voting protocol where to
compute Tally() we shall require that at least t + 1 trustees
cooperate and follow the protocol specification, without as-
suming the existence of a trusted dealer. We need what
is called a fully distributed (t,€)-threshold cryptosystem or
threshold cryptosystem without trusted dealer. In such a
cryptosystem, there exist £ servers which can communicate
via pairwise private authenticated channels. They have ac-
cess to an append-only public board where every server can
post messages, and these posts can be traced back to its
sender. A setup interaction is then run between the £ servers
to build a public key pk, servers’ private keys ski, ..., sk,
and eventually verification keys vki, ..., vke. The secret and
verification keys will later enable any set of (¢ 4+ 1) servers
to non-interactively decrypt ciphertexts computed under the
public key pk. On the contrary, any set of at most ¢ servers
can not learn any information on the plaintext embedded on
any given ciphertext C. Rigorously, a fully distributed t-out-
of-¢ threshold cryptosystem with non-interactive threshold
decryption consists of the following algorithms:

DistKG(1*,¢,¢) is a fully distributed key generation algo-
rithm that takes as input a security parameter 1*,
the number of decryption servers ¢, and the thresh-
old parameter ¢; it outputs a public key pk, a list
sk = {ski,...,ske} of servers’ private keys, a list vk =
{vki,...,vke} of verification keys.

Enc(pk,m) is an encryption algorithm that takes as input
the public key pk and a plaintext m, and outputs a ci-
phertext C. We may write Enc(pk, m;r) when we want
to make explicit the random coins used for encrypting.

ShareDec(sk;, vks, C') is a share decryption algorithm that
takes as input the public key pk, the private key sk;,
the verification key vk;, a ciphertext C', and outputs a
decryption share (7, ¢;).

Rec(pk, vk, C,C) is a recovery algorithm that takes as input
the public key pk, a ciphertext C, and a list C of ¢t + 1
decryption shares, together with the verification keys
vki,...,vke, and outputs a message m or reject.

We recall the definition of completeness and robustness and
IND-CPA security for a threshold cryptosystem:

Completeness: for any integers 1 < t < £, for every ad-
missible plaintext m, we require Rec(pk, vk, C,C) = m,
where (1) (pk,sk,vk) « DistKG(1*,t,£); (2) C =
Enc(pk,m); (3) (i,c¢;) < ShareDec(sk;, vk, C); and (4)
C C{ec1,...,ce} is any subset of t + 1 elements.

Robustness: against active cheating adversaries means
that for any ciphertext C' and any two (¢t + 1)-subsets
of decryption shares C # C’ such that Rec(pk,C,C) #
reject # Rec(pk,C,C’) it holds that Rec(pk,C,C) =
Rec(pk, C,C").

IND-CPA security - Static corruptions: On input the
total number of decryption servers ¢ and threshold ¢,
an IND-CPA adversary A chooses t servers to be cor-
rupted. We assume wlog. that A chooses servers 1 to
t. From this point on A acts on behalf of corrupted
servers, while the challenger acts on behalf of the re-
maining servers, which behave honestly (namely they
follow the protocol specification).

The adversary A and the challenger run together the
algorithm DistKG(1*, ¢, £), at the end of which the ad-
versary learns ski,...,sks. The public encryption and
verification keys pk,vk are obtained. A chooses two
admissible messages mo, m1 with equal length. The

challenger chooses 3 & {0,1} and sends the adver-
sary the encryption Enc(pk,mg). Finally A outputs
its guess 3’ € {0,1}. Let us define the output of the
IND-CPA experiment as 1 if 3/ = 3 and 0 otherwise.

We say that a fully distributed cryptosystem
& = (DistKG, Enc, ShareDec, Rec)

has IND-CPA security against static corruptions if no
PPT algorithm A can tell apart encryptions of mo and
ma1, i.e. there is a negligible function v(\) such that,
for any PPT adversary A, it holds that Succ™(A) =
| Pr(Exp%°(A) =1] —1/2 | < v(X), where Exp%” is the
experiment above.

3.1 IND-CPA Fully Distributed (¢, »)-Threshold
Cryptosystem from DDH in the Standard
Model

Few electronic voting works detail how to generate the
election public and secret keys in a fully distributed manner
with arbitrary threshold parameters (¢, ¢) such that 0 < ¢ <
¢ — 1. One notable exception is the work by Juels, Catalano
and Jakobsson [32], whose idea has been detailed and imple-
mented by Davis, Chmelev and Clarkson [19]. They propose
to use a computationally secure distributed simulation of the



process of generating a public key Y = ¢*, z Fil Zg. In par-
ticular, they propose the DKG scheme by Gennaro, Jarecki,
Krawczyk and Rabin in [28].

In this section we give a full description and proof of a fully
distributed cryptosystem compatible with Helios, which is in
fact obtained by coupling Pedersen’s DKG [38] with ElGa-
mal. This cryptosystem has been previously described in
[25, 17]. However we shall notice that no proof of semantic
security has been given in these works, nor elsewhere to our
knowledge. The latter is somehow unsatisfactory, since as it
is common wisdom for cryptographic protocols, the devil is
in the details. In fact Pedersen’s protocol is shown in [28§]
to not always output uniformly random public keys, so in
principle it does not seem to be a good choice to distribute
ElGamal while retaining the DDH assumption (we refer to
[40] for a definition of DDH) for semantic security. Peder-
sen’s DKG is known to be sound in conjunction with Schnorr
signatures in the Random Oracle Model, as shown in [27, 28].
Here we apply the same techniques to prove that Perdersen’s
DKG + ElGamal gives fully distributed semantically secure
encryption under DDH. In this case the result is in principle
more challenging, as [28] seems to indicate, since the ad-
versary solves a decisional problem (in contrast to a search
problem, as in the case of digital signatures) in the standard
model (in contrast to the random oracle model). Still the
same techniques used in the Schnorr case can be applied to
the ElGamal case. Let D = (DistKG, Enc, ShareDec, Rec) be
then the threshold cryptosystem [25, 17, 19]:

DistKG(1*, ¢, £)

1. Each party P; chooses a random t-degree polyno-
mial fi(z) = aio + anz + ...+ anxt € Z[z] and
broadcasts A;x = g** for k = 0,...,t. Denote
the secret held by P; as s; = f;(0) and let Y; =
g% Each party P; computes shares s;; = f;(j)
mod ¢ of its own secret s; for j = 1,...,¢ and
sends s;; € Zg secretly to party Pj.

2. Each party P; verifies the shares he received by
checking for i =1,...,¢:

t
Sii ik
g = [[(Any 1)
k=0
If a check fails for an index 7 then P; broadcasts
a complaint against P;.

3. Party P; reveals share s;; € Zq if it receives a
complaint against him by party P;. If any of the
revealed shares s;; fails to satisfy Equation 1, then
P, is disqualified. Let us define the set QUAL # ()
as the set of qualified players.

4. The public key is computed as pk = HiEQUAL Y.
Each P; sets his share of the secret key as z; =
> icquar Si mod g. The virtual decryption key
T = ZZEQUAL s; mod g is not needed to be known
to be able to decrypt. The public verification
keys are clf)mputed as vk; = HiEQUAL g®ii for
j=1,...,¢

Enc(pk, m) outputs C = (R, S) = (¢",Y"-m) for a plaintext

R
m € G and randomness r < Z,.

ShareDec(sk;, vk;, C') outputs (i,c; = R™).

Rec(pk, vk, C,C) parses C' = (R, S),C = {ciy,...,¢i,,, } and
-1
i
outputs m =S - <H c;\j> with Z = {é1,..., %41},
JET

where the )\Jz’s are the Lagrange coefficients, )\JZ =
[Tier iy ﬁ € Zy. We thus have that 37, FOIAT =
f(0) for any polynomial f of degree at most ¢.

Let us see that the above cryptosystem is complete. In-
deed, let C = (R,S) = (¢",Y" - m). Consider the equation

S = (3 )= 3 (T -

jez JET i€QUAL i€QUAL \je€Z
Z <Z)‘szl(])) = Z 8;. Then
i€QUAL \jeT i€QUAL
T
chf — H(R%‘)*? — R(ZjexrT=) _ pe
jez jeT

and completeness follows.

Theorem 3.1 The above scheme is IND-CPA secure under
the DDH assumption.

PrOOF. The reduction we show next is based on the ideas
used by Gennaro et. al [28] to prove that Pedersen’s key gen-
eration protocol produces hard instances of the dlog prob-
lem. Let (g,9% g%, h) be the instance of the DDH problem
that we need to distinguish. That is, we need to distinguish

between the case h = ¢*° or h £ G. To this end, we will
use the IND-CPA adversary against the cryptosystem from
Section 3. We simulate the IND-CPA game to the IND-CPA
adversary A. Let B be the set of parties corrupted by .A.
Let G denote the set of honest decryption servers that will
be simulated by our reduction. Wlog let us assume that the
{-th server is honest, i.e. Ty € G.

What does the adversary expect to see? In the first place,
the adversary chooses before the start of the IND-CPA game
(static corruption) the set B C {1,...,£} of players that it
will corrupt, |B| < t. For each i € B the adversary plays
the role of the i-th server T;. At the end of the distributed
key generation phase, the adversary learns the public and
verification keys pk, vk. Next, adversary A will choose two
different plaintexts mo, m1 € G and asks to see Enc(pk, mg)

for a random coin 3 & {0,1}. His goal is to learn 3 with
probability significantly away from 1/2.

We start our simulation of the IND-CPA game by running
a regular instance of DistKG(1%,¢,£), except that for server
Ty we cheat without A noticing, and this results in a sim-
ulation that provides g as T;’s contribution to the jointly
computed public key pk. That is, for party Ty we choose t

values s;; id Zg4 for j € B and we send it to corrupted server
T; € B. Notice that there exists a unique polynomial fe(z)
of degree t such that f;(0) = a and f;(j) = s;; for j € B. Let
fo(2) = ao+aeiz+...+apz' € Z[2]. Then it is known that
there exists a proper set of efficiently computable Lagrange
coefficients A¢; such that ag; = Aeoa + 22:1 AzjSez, which

are defined as a function of the values s;; 2 Zq for j € B
as indicated in [28]. We can not explicitly compute them,
but instead we are able to compute an implicit representa-
tion Ay = g = (h)*o H;:l g°%*¢ . Finally we broadcast

Ao, ..., Ap on behalf of Ty



Let pk be the public key output by the DistKG algorithm.
[28] shows that pk can be written as pk = g% - Y5 - Y, where
Ys is the contribution of servers in G \ {¢}, and Y5 is the
contribution of parties in the set B N QUAL. Furthermore,
if we write Yo = ¢°¢ and Yg = ¢”B, the simulator can
explicitly compute both ¢ and zp. Indeed, as [28] argues,
the simulator chose x¢ on behalf of the honest servers. On
the other hand, the contribution of each server in ¢ € B that
has not been disqualified is the free term of a polynomial
fi(2) € Zq|z] of degree t, and the simulator holds at least
t+ 1 points on this polynomial. If follows that the simulator
can compute each of these contributions and hence the value
rB € Zq.

Now, let mo, m1 € G be the plaintexts chosen by A. Then
we build the challenge ciphertext Cs = (g°, h-g\"¢ 178 5)

for g & {0,1}. Notice that if b = g°° then h - g(*a+eB)® —

pk?; else if h = g" for r Fid Zq then h-g*¢ 2B ig uniformly
distributed at random in G as long as (x¢+xp)b # —r. The
latter can be discarded, as this only happens with negligible
probability 1/q.

Thus, using the standard reduction argument, we can con-
clude that any IND-CPA adversary against the above fully
distributed threshold cryptosystem implies a DDH solver. []

3.2 A Transformation for NM-CPA Thresh-
old Cryptosystems in the Random Oracle
Model

We know from previous work that ballot private Helios-
like voting protocols are tightly related to NM-CPA cryp-
tosystems [9, 10]. Next we state that and IND-CPA fully dis-
tributed (¢, £)-threshold cryptosystem can be converted into
a NM-CPA Fully Distributed (¢, £)-Threshold Cryptosystem
by applying the transformation in [10, 9]. The definitions of
Y-protocols and the Fiat-Shamir transform are well-known
and are recalled in Appendixes A and B.

Theorem 3.2 Let D' = (DistKG’, Enc’, ShareDec’, Rec’) be
an IND-CPA fully distributed (t,£)-threshold cryptosystem
and let (Prove, Verify) be a X-protocol for the language

R((pk,C), (m,r)) =1 <= C = Enc'(pk,m;r)

with special soundness, special honest-verifier zero knowl-
edge, unique responses and an exponentially large (in the se-
curity parameter) challenge space C € Ch. Let H : {0,1}* —
Ch be a random oracle. Then the following construction
D = (DistKG, Enc, ShareDec, Rec), that uses the Fiat-Shamir
transformation provides a NM-CPA fully distributed (t,£)-
threshold cryptosystem. The definitions of X-protocols and
the Fiat-Shamir transform are well-known and are recalled
in Appendizes A and B.

DistKG()): is defined as DistKG'(\)

Enc(pk, m;7): computes C' « Enc’(pk, m;r) and runs Prove
on input ((pk, C"), (m, 7)) until it outputs commitment
com; it computes challenge ch — H(pk,C,com) and
sends this to Prove; obtains the response res from Prove
and returns the ciphertext C «— (C', com,res).

ShareDec(sk;, vk, C): parses C as (C',com,res). Then if
Verify((pk, C'), com, ch,res) = 0, it returns reject.
Else, it outputs whatever ShareDec’(sk;,vk;, C') out-
puts.

Rec(pk, vk, C,C): parses C as (C',com,res). It returns
reject if Verify((pk,C"),com,ch,res) = 0. Else, it
outputs whatever Rec’ (pk, vk, C’,C) outputs.

PrROOF. The proof is obtained by replacing the algorithms
corresponding to an IND-CPA PKE in either Theorem 5.1
in [10] or Theorem 2 in [9] by the algorithms corresponding
to a fully distributed threshold cryptosystem. Additionally,
algorithms ShareDec and Rec have to be adapted. We do
not give full details in here, as they are cumbersome and
the proof from [10, 9] can be adapted with no additional
difficulties. [

4. FULLY DISTRIBUTED HELIOS WITH AR-

BITRARY THRESHOLD

In this section we present a detailed fully distributed ver-
sion of Helios [4] with arbitrary threshold parameters, for
the first time with formal proofs. As an added value, our
modification also avoids ciphertext weeding while achieving
ballot privacy. It takes into account the specification of He-
lios variants such as [15, 9].

4.1 Building blocks

Firstly, we need the fully distributed IND-CPA cryptosys-
tem D = (DistKG, Enc, ShareDec, Rec) from Section 3.

Secondly we need a couple of NIZK proof systems, namely
DisjProof“P* (g, pk, R, S) and EqDI(g, R, vk, ¢). The first proof
system allows to non-interactively prove in zero-knowledge
that a ciphertext (R, S) from cryptosystem D encrypts g° or
g'. The second proof system Eq DI(g, R, vk, c) allows to prove
in zero-knowledge that log, vk = logp ¢ for g, R,vk,c € G.
These proof systems are described next.

Let G a cyclic group of order ¢ and g1, g2 € G. We define
the language Leqpi = {(91,92,y1,92) |log,, y1 = log,, ya}.
The Chaum-Pedersen Y-protocol for proving equality of dis-
crete logarithm works as follows: both prover and verifier
have as input (G, q, (91,%1), (92,¥2)); prover has a witness
x = log, w1 = log,, y2 to the statement as additional

input. The prover chooses r & Zq and sends comi = g7
and coms = g5 to the verifier. The latter sends a random

challenge ch Fid Zq to the prover who then responds with
res = r + x - ch. The verifier accepts iff ¢gi*® = com; - y§"
and g5%° = coms - ¥5". For this X-protocol, Simulates (g1,
G2, Y1, Y2, ch,res) returns comy «— g7 /y$h and coms —
g5¢% /ysh. The Equality of Discrete-Logarithms proof system
EqDI(g1, g2, y1,y2) = (PrEq, VerifyEq) for g1,92,y1,92 € G
is the non-interactive proof system associated to the lan-
guage Leqoi when applying the Fiat-Shamir to the above
3-protocol. That is, the prover sets ch — H(g1, g2, Y1, Y2,
coma, coms), where com,coms € G are as above. Prover’s
output is (ch,res = r + x - ch). The verifier computes
comi — g7 /y$" and coms «— g¢5°°/ys" and returns the
output of the test ch < H(g1,92,Y1, Y2, comi, coms).

On the other hand, DisjProof(g, pk, R,S) = (DisjProve,
DisjVerify) is a NIZK proof that an ElGamal ciphertext C' =
(R=g",S = pk"g™) encrypts either m = 0 or m = 1. This
is built using [16] and the proof system for Lgqpi to show
that either (g, pk, R, S) € Leqoi or (g,pk, R, S - g™ ") € Leqpr-
It works as follows. Assume wlog that (g, pk, R, S) ¢ Lgqpi.
First, the prover fakes a proof (g, pk, R, S) € Leqoi by choos-

ing (cho,reso) £ Zq % Zq and setting Uy = g /R0



and Vp = kaESO/SChO. It then sets Uy = ¢g*' and Vi =
pk*! for res; ¥id Zq and ¢ = H(g,pk, R, S, Uo, Vo, U1, V7).
It defines ch1 = ch — cho and res; = w1 + chir. On
the one hand, DisjProve(G,Y, R, S,r) is set to output m «—
(cho, ch1,reso, res1). Finally, DisjVerify(g, pk, R, S, 7) checks
if cho +chy = H(g,pk, R, S, S0 B CORL B

’ Rc¢ho Y gcho 7 Rchy 7(S-g_1)C]L1 .

4.2 Fully Distributed Helios

For readability, we describe Helios for a single choice elec-
tion (voters may simply vote 0 or 1). It can be easily gen-
eralized to elections with several candidates. We assume an
authenticated channel between each voter and the bulletin
board manager. In Helios, this is typically realized through
password-based authentication. Formally, Fully Distributed
Helios consists of eight algorithms V"¢ = (Register, Setup,
Vote, Validate, VerifyVote, Box, Tally, Verify) defined below:

Register(1*,4d, L) sets (upk;,, uskiq) «— (id, 0). It adds id to
L and outputs id.

Setup(1*,¢,£) runs DistKG(1*, ¢, ) from Section 3, such that
at the end, each trustee T; knows a secret key x; € Zg.
A public key for encrypting votes pk € G is created. A
hash function H : {0,1}* — Z, is chosen. It outputs
pk — (G,q,pk,vki — ¢°',...,vke « ¢"¢,L,H,V =
{0,1}), the public key of the election.

Vote (id, upk, usk, v) encrypts choice v € {0, 1} as Enc(pk, g*)
= C = (R, S). It computes a proof 7 = DisjProve’(g,
pk, R, S) guaranteeing that the encrypted vote is 0 or
1. The ballot is defined as b = (id, C, 7).

Validate(b) parses the ballot b as a tuple (id,C,m). It then
checks whether: (1) id € L; (2) DisjVerify*e (g, pk, C, )
= 1. If any step fails, it returns reject; else it returns
accept.

VerifyVote(id, upk, usk, b) returns the value of the test b €
BB.

Box(BB,b) if Validate(b) = reject, it halts. Else, (2) it
parses b = (id,C,7) and checks whether identity id
appears in a previous entry in BB. If so, it erases that
entry. (3) It adds b to BB.

Tally(BB, sk) consists of two phases, a first one performed
by each trustee in isolation and a second one performed
interactively by a subset of trustees which outputs
the outcome of the election. In the first phase, every
trustee 7,1 < j < £:

(1) Runs Validate(b) for every b € BB. It outputs
invalid, meaning invalid election, if any b is re-
jected.

(2) Parses each ballot b € BB as (idy, Cy, mp).

(3) Checks whether id, appears in a previous entry
in BB. If so, it outputs invalid; else,

(4) Computes the atomic result ciphertext Cs = (Rx,
SE) = (HbeBB Rb, HbEBB Sb ), where Cb = (Rb, Sb)
It outputs its decryption shares (j,c;,7;) on Cx
where c; « ShareDec’(skj, vk;, (Rs, Sx)) and 7,
is a proof of knowledge of x; s.t. ¢; = (Rx)™ and
vk; = ¢%7 obtained via PrEq(g, vk;, Rs, ¢;).

In the second phase, each trustee T}:

(5) Checks whether VerifyEq(g, vki, Rs, ck, k) = 1
for k = 1,...,£4. If not, it outputs result «— 0.
Else,

(6) Computes g"™“"* « Rec(pk, vk, (Rs, Sx:),C). The
tally result is obtained from ¢™*" in time /7 for
result lying in the interval [0, 7] and 7 equals the
number of legitimate voters.

(7) Finally Il = {(c;, )=y -

Verify (BB, result, IT)

(1) Performs the checks (1-3) done in the algorithm
Tally. If any of the checks fail, then it returns
reject unless the result is itself set to invalid.
Else,

(2) Computes the result ciphertext

(Rx, Sx) = ( H Ry, H Sb)

beBB beBB

It verifies the decryption shares (j, ¢;, 7;), for 1 <
j < L. If any check fails, it returns reject unless
the result is itself set to invalid.

(3) Checks whether Rec(pk, vk, (Rs, S=,C)) = g™,
where C C Il is any (¢+1)-subset. If all the checks
pass, the algorithm returns accept and it returns
reject otherwise.

Theorem 4.1 Fully Distributed Helios has ballot privacy
under the DDH assumption in the Random Oracle Model.

PROOF. The main ideas in this proof are those used in [9].
Our only novelty is that we see that [9] easily generalises to
a fully distributed setting with arbitrary threshold parame-
ters. To do this, the first step is to show that the pair (C, )
in Fully Distributed Helios can be seen as the ciphertext of
a fully distributed NM-CPA cryptosystem.

Indeed, let D be the cryptosystem from Section 3.1 and
let D = (DistKG, Enc, ShareDec, Rec) be the threshold cryp-
tosystem obtained by letting DistKG = DistKG' and

Enc(pk,m): form € {0,1} chooses r i3 Zq and set (R, S) =
(g",pk™ - g™). Now it runs m « DisjProve’(g, pk, R,
S,r) and returns ((R, S), ).

ShareDec(skj, vk;, (R, S),7)): returns reject if

DisjVerify"*(g, pk, R, S, 7) = 0.

Else, it runs (j,c;) « ShareDec'(sk;, vkj, (R, S)). It
runs m; < PrEq(g, R, vkj, ¢;,sk;). It outputs (4, ¢;, ;).

Rec(pk7 Vk7 ((R? S)? 7T)’ C):
DisjVerify**(g, pk, R, S, 7) = 0.

returns reject if

Else, it parses every element in C as (j,¢;,m;). If for
any 4 it happens VerifyEq(g, R, vkj, c;,m;) = 0, it out-
puts reject. Else, it runs Rec(pk, vk, (R, S), {ci1, ...,
Ci(t+1)})~

where id is a fixed voter’s identity.



Lemma 4.2 D is NM-CPA and robust in the Random Or-
acle Model under the DDH assumption.

Proor. NM-CPA security is obtained from Theorem 3.2.
This is because D' is IND-CPA and because the proof sys-
tem DisjProof"?* is the result of applying the augmented
Fiat-Shamir transform from Appendix C to Chaum-Perdersen
3-protocol (see Appendix B). This way the requirements of
Theorem 3.2 are satisified and the result holds.

Let us now briefly address robustness. The soundness of
the proof system EqDI(g, R, vk;,c;) implies that log, vk; =
log; ¢; with overwhelming probability if

VerifyEq(g, R, vkj, ¢, mj) =1

for any 1 < j < I. Therefore, for any (R,S) € G*,C =
{ciys . sciy 1, C = {ck,, -
C) # reject # Rec(pk, (R, S),C*), we have that

H ch’I = H (c*)zfC =R"

=1, ,t+1 G=1,...,t+1

and thus

s-<_ 11 c*I) :s-<‘ 11 (J)Q;‘K) —m (2)

Vot reenst1

with Z = {’il, e ,it+1},lC = {k17 e 7kt+1}7 pk = gz Fi-
nally, equation (2) is equivalent to equation

Rec(pk, vk, C,C) = Rec(pk,vk,C,C*) O

Secondly, we need to build a simulator such that if we let
(Rrs,SLs), (Rrs, Srs) be the result ciphertexts in the left
and right boards respectively, then when the ballot private
adversary is supposed to have access to the right board,
the simulator needs to make the adversary thinking that
Rec(pk, vk, (Rgs, Srx),C) = Scx-(Rrs)~ %, that is the sim-
ulator needs to give out the result from tallying BB, to A,
while A is tallying BBg, without .4 noticing. Since the sim-
ulator can program the random oracle, this can be done
by using the simulate algorithm of the equality of discrete
logarithms sigma-protocol from Appendix B. This makes it
possible for the simulator to cheat the adversary by convinc-
ing A to accept the result from Tally(BBy,sk), while A has
access to the right board. [

Ciphertext weeding avoided. Recall that weeding bal-
lots is essential for proving ballot privacy. It turns out that
there is no need in Fully Distributed Helios for weeding ci-
phertexts (as previously done in [15, 9]). Let us recall that
the latter property is essential for proving ballot privacy. In
effect, let 7% = (co, c1, fo, f1) and ©¢ = (cb, ch, f4, F1) be
disjunctive Chaum-Pedersen NIZKs asserting that two given
ciphertexts belonging to different voters with public creden-
tials id # id’ are encryptions of 0 or 1 in Fully Distributed
Helios. Ballot weeding consists on rejecting to add ballots
b;qr to the bulletin board such that 79" — 7 if the atomic
proof 7' is contained in a previous ballot b;y. We aim at
simplifying this procedure. First, notice that if the proofs
i, rid verify with respect to the corresponding ciphertexts
(R, S),(R',S") then it holds

-+ Ck,,, } such that Rec(pk, (R, S),

[ candidates | 2] 5] 10] 20 30] 50]
enc+proofs [ 600 | T197 [ 2138 [ 4059 | 6061 [ 9617
ballot verif [ 110 [ 210 | 390 [ 720 | 1070 | 1730

Figure 2: Timing in miliseconds for Fully Dis-
tributed Helios

fo fo f1 f1
Co+01=H<id,R,S,g Y g Y )

Reo’ Seo’ Rer’ (§/g)e
gfo vl ghi y i )

cf)—&—c'l:H(id',R/,S/, -, -, -, ;
(R)%0 (S")% (R) (S'/g)

The presence of the signing verification key of each voter
to the hash function makes ballots weeding trivial. In fact
for any pair of valid atomic disjunctive proofs ﬂ'idﬂTid/ we
have that Pr[r = 7% |id # id'] = Pr[H (id, 7*%) = H(id,
rid'y |id # id'] for any 7' 717 satisfying Equation 3. In
particular assume that H is a collision-resistant hash func-
tion. Then Prob[r'd = ¢’ | id # id'] is less than the proba-
bility of finding a collision on the hash function.

Replacing identities with nonces. We have seen that
our fully distributed variant of Helios avoids ciphertext weed-
ing by adding voter’s identifier id to the ballot and as in-
put to the hash function used in the NIZK proofs of ballot
well-formedness. This solution might be unsatisfactory in
some scenarios: for instance this practice is forbidden in
presidential elections in some countries (e.g. France) and
it harms any form of everlasting privacy [37, 5, 18]. We
propose an alternative solution that equally avoids cipher-
text weeding while preserving ballot privacy: replace id by
a random nonce n, produced anew at every invocation of
the Vote algorithm. Now ciphertext weeding is avoided by
implementing nonce weeding. Let 7,n¢c be respectively the
number of voters and candidates. The new proposed weed-
ing has the merit that it again takes complexity proportional
to 7, in contrast to complexity proportional to TnZ for ci-
phertext weeding.

We have proposed this solution in response to a public
request to avoid replay attacks done in GitHub by the main
developer of Helios, and it might be incorporated in upcom-
ing versions [2].

S. OPEN SOURCE IMPLEMENTATION OF
FULLY DISTRIBUTED HELIOS

We have implemented a proof of concept of our variant
of Helios, called Fully Distributed Helios, openly accessible
at [29].

Table 2 shows timings, for various numbers of candidates
(from 2 to 50). The first line are timings on the time needed
by the voter’s browser to form the ballot. The second line
indicates the computation time on the server side for per-
forming the verification tests (well-formedness of the ballot,
validity of the proofs of knowledge. In practice, we use a
256-bit multiplicative subgroup of a 2048-bit prime field for
ElGamal and Fiat-Shamir operations. The figures have been
obtained on a computer with an Intel(R) Core(TM) i7-2600
CPU @ 3.40GHz, running Firefox 18.



For the fully distributed threshold cryptosystem to be
more practical for the parties involved, we use the follow-
ing trick: each trustee P; derives from a random seed r;
so-called “setup” keys along with the polynomial f; of the
DistKG algorithm. Setup keys consist of a signature keypair
and an encryption keypair whose public parts are published
with the A;x at the beginning of the key distribution algo-
rithm. Then, DistKG can be run as described earlier, using
setup keys to establish the needed secure communication
channels through a single server. That server can also be
used to securely store all messages so that from the point of
view of trustee P;, only r; needs to be remembered.
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APPENDIX

A. SIGMA PROTOCOLS

Let R : {0,1}* x {0,1}* — {0,1} be an efficiently com-
putable relation. Let Lr = {Y € {0,1}" | Jw : R(w,y)} be
the language defined by R and let A be such that Lr C A
and A is decidable in polynomial time.

A proof system for the language Lr is a pair of possibly
interactive algorithms (Prove, Verify) such that with over-
whelming probability the interaction Verify(Y') < Prove(w,Y)
ends with accept for every (w,Y) € R.

A Y-protocol is an interactive between a prover and a ver-
ifier in which the sender starts the interaction by sending a
value com, the commitment. The verifier replies with a chal-
lenge ch taken uniformly at random from a given challenge
set. The prover ends by sending a response res. The verifier
checks the validity of the claimed proof by calling a deter-
ministic algorithm Verifyy, (Y, com, ch, res). Basic properties
for ¥-protocol are:

Special honest-verifier zero-knowledge: thereisan al-
gorithm Simulateyx, called the simulator that takes as
input a statement Y € {0,1}* (that may or may not be
valid), a challenge ch and a response res and outputs a
commitment com such that Verifyy (Y, com, ch,res) =
1. Furthermore, if com, res are uniformly random, then
(com, ch,res) is distributed as a real conversation be-
tween the prover on input (w,Y’) and an honest verifier.

Zero-knowledge: The ¥-protocol is zero-knowledge if the
previous simulator can be efficiently built and the ver-
ifier can possibly be dishonest.

Special soundness: if there is an algorithm Extracts, that
given a statement Y and any two triples (com, ch, res)
and (com,ch’,res’) with ch # ch’' as input, returns a
witness w such that R(w,Y’) holds.

Unique Responses: A Y-protocol has unique responses
if for any statement Y, any commitment com and any
challenge ch, there is at most one value res such that
Verifys (Y, com, ch,res) = 1.

B. FIAT-SHAMIR TRANSFORMATION AND
NIZKS

Definition B.1 (Fiat-Shamir Transformation [20, 9])
Let ¥ = (Proves, Verifyy,) and H : {0,1}* — Ch a hash
function, where Ch is the challenge set for . The Fiat-
Shamir transformation of ¥ is the non-interactive proof sys-
tem FSy(X) = (Prove, Verify) defined as follows:



Prove(w,Y): runsProves(w,Y’) to obtain commitment com
and computes ch «— H(Y,com). It then completes the
run of Proves, with ch as input to get the response res
and outputs the pair (ch,res).

Verify(Y, ch,res): computes com <« Simulates (Y, ch,res)
and runs Verifys, (Y, com, ch,res).

The resulting non-interactive zero-knowledge (NIZK) proof
system for the relation R is complete; sound, meaning that
if R(w,Y) =0 for any w, then with overwehlming probabil-
ity, it holds that 0 < Verify(Y,ch,res) for any (ch,res);
zero-knowledge, meaning that there exists a simulator
that given a valid statement Y it outputs (com, ch,res) in-
distinguishable from a real proof such that Verify accepts.

C. AD-HOC FIAT-SHAMIR TRANSFORMA -

TION

We prove that if one adds an arbitrary string (which will
be the voter’s credential) to the hash function, the proof-
system obtained by applying the Fiat-Shamir transform re-
mains sound. Let (Provey;, Verifys) be a 3-protocol for a
given language L% C A’. We will modify it into a ¥-protocol
for the extended language Lr = {(id,Y)|Fw : R(w, (id,Y)}
which is equal to {0, 1}* x L, since id is any string in {0, 1}*.
And LR CA={0,1}* x A"

It is easy to see that if A’ is decidable, so is A. The inter-
action Verifyy(id,Y) < Proves(w, (id,Y")) is defined iden-
tically to Verifyg(Y) < Provey(w,Y). It turns out that
if (Provey,, Verifyy) is special honest-verifier zero-knowledge
and special sound, so is (Proves;, Verifyy,). This is easily seen
by defining

Simulates ((id,Y), ¢, f) =
Verifys ((id,Y), A,c, f) =
Extracty, := Extracty

Simulates (Y, ¢, f)
Verifys, (Y, A, c, f)

Applying the Strong Fiat-Shamir transformation to (Proves,
Verifyy.) provides a non-interactive proof system (Prove, Verify)

as follows: Prove(w, (id,Y’)) runs Proves(w, (id,Y)) to ob-
tain commitment A, computes ¢ «— H(id,Y, A), completes
the run of Proves, with ¢ as input to get the response f and
finally outputs the pair (c, f). Verify((id,Y), ¢, f) computes
A from ((id,Y), ¢, f) by using the Simulates, algorithm and
then runs Verifyy, (Y, A, ¢, f).

Theorem C.1 Let (Provey;, Verifyy) be a X-protocol that is
special honest-verifier zero-knowledge and special sound and
let (Prove, Verify) be the non-interactive proof system ob-
tained from our ad-hoc Fiat-Shamir transformation. Then
the new proof system is zero-knowledge and simulation-sound
extractable.

PRrROOF. This is a corollary of Theorem 1 in [9], since the
ad-hoc Fiat-Shamir transformation can be seen as extending
(Provey;, Verifyy,) to a new X-protocol (Proves, Verifyy,) that
takes an arbitrary dummy string id as input and then applies
Fiat-Shamir. [

Theorem C.1 implies that if we let DisjProof*? (g, pk, R, S)
be the NIZK proof system obtained from DisjProof (g, pk, R, S)
by adding id as an input to the hash function, then the new
proof system retains all the security properties hold by the

original NIZK. This new proof system is essential to avoid
ciphertext weeding.



