
Secure Hybrid Encryption In the Standard
Model from Hard Learning Problems

Xavier Boyen1, Malika Izabachène2, Qinyi Li3

1 QUT, Brisbane, Australia
2 Cosmian, Paris, France

3 Griffith University, Brisbane, Australia

Abstract. We present chosen-ciphertext secure hybrid encryption sys-
tems in the standard model from the learning with errors problem and
low-noise learning parity with noise problem. The systems consist of
public-key key encapsulation mechanisms that are not chosen-ciphertext
secure. The systems are more efficient than the existing chosen-ciphertext
secure hybrid encryption systems in the standard model based on the
same hard learning problems.

Keywords: Hybrid encryption, CCA security, Standard model

1 Introduction

When encrypting large messages, public-key encryption (PKE) is mostly used
as a key encapsulation mechanism (KEM) with a secret-key data encapsulation
mechanism (DEM) to build hybrid encryption (HE) system. In a HE system, the
KEM produces secret session keys for the DEM to encrypt the actual messages.
The HE paradigm was proposed in [9], and it is known that if the KEM and
the DEM are both adaptive-chosen ciphertext secure (CCA secure), then the
HE system is CCA secure. Since CCA-secure DEM is relatively easy to obtain,
the natural step of constructing a CCA-secure HE is to build a CCA-secure
KEM or PKE. For example, starting from a weakly secure (i.e., chosen-plaintext
secure or even oneway) PKE system, a CCA-secure KEM can be built in the
random oracle model (ROM) (or the quantum random oracle model (QROM))
by applying to the Fujisaki-Okamoto transformation [13], or its variants, e.g.,
[15]. On the other hand, CCA-secure KEM is not necessary for a CCA-secure HE
system. One of the prominent examples is the Kurosawa-Desmedt HE system
[18], which is CCA secure, but its KEM is not ([2,16] showed that the KEM meets
weaker security than the CCA security). CCA-secure HE systems with weakly
secure KEMs are often more efficient than the CCA-secure HE systems with
CCA-secure KEMs. For instance, the Kurosawa-Desmedt system is more efficient
than the Cramer-Shoup system [8]. However, to the best of our knowledge, CCA-
secure HE systems with similar feature (i.e., non-CCA-secure KEMs) under the
post-quantum assumptions remain unknown.

2

1.1 Our Contributions

We present a post-quantum HE system in the standard model from the learning
with errors (LWE) problem. The HE system is CCA secure, but its KEM is not,
which gives the first post-quantum CCA-secure HE system with non-CCA-secure
KEM. Our HE system’s KEM is a non-adaptive CCA-secure PKE system pro-
vided in [19]. The DEM part constitutes a message authentication code (MAC)
and a weakly secure secret-key encryption (SKE) system. Due to the KEM’s
simplicity, the HE system is more efficient than the existing HE systems from
lattices in the standard model.

Our technique extends to a CCA-secure HE system from low-noise LPN,
based on the Kiltz et al.’s LPN double trapdoor [17]. However, by avoiding the
generic transformations, our HE system is more efficient than the HE system ob-
tained from [17]. Our technique also gives simple CCA-secure KEMs from LWE
(and low-noise LPN). This is done by combining the non-CCA-secure KEMs
with a one-time secure MAC.

It is worth mentioning that our LWE-based HE system and KEM system
can be adapted straightforwardly to the ring LWE setting) to be made more
space-efficient, since their basis is the trapdoor function from [19], which has
ring versions (also supported by practical implementations, e.g., [5,12]). This is
not known to be the case for some previous constructions (e.g., [7]). Fig. 1 and

LWE constructions |pk| |ct| Enc. Time Dec. Time Ring?

[19]+[6]+CPA-DEM 2nm log q 2nm log q + |tag|+ |com|+ |φ| t+ tcom t′ + tdecom YES
[7]+CCA-DEM 3nm log q 2nm log q + |tag|+ λ+ |φ| t+ tsis t′ + tsis Unknown
This work 2nm log q 2m log q + |tag|+ |φ| t t′ YES

Table 1: Comparison among LWE-based HE systems

Fig. 2 summarise comparisons among post-quantum HE systems in the standard
model. We compare our LWE-based HE system with two HE systems. The first
one is the combination of the CCA1 PKE system in [19], Boneh-Katz transfor-
mation [6], and a chosen-plaintext secure secret-key encryption system as the
DEM (we note that the MAC in the transformation is also used to authenticate
the whole ciphertext, which allows avoiding a CCA-secure DEM). The other one
is the combination of the CCA-secure KEM from [7] and a CCA-secure KEM
(which can be built by using a chosen-plaintext secure secret-key encryption
and a MAC). We also compare our LPN-based HE system with the HE system
derived from applying Boneh-Katz transformation to the tag-based encryption
system from [17] and a secret-key encryption system.

The comparisons assume the HE systems using the same LWE/LPN param-
eters (e.g., dimensions, noise ratios) and consider the KEM part encapsulates
λ ≤ n-bit session keys. |tag| denotes the size of tags output by the MAC (either
for Boneh-Katz transformation or for CCA-secure DEM). |com| denotes the size
of commitment from the commitment scheme used by Boneh-Katz transforma-
tion. |φ| denotes the size of encryption of messages produced by the secret-key
encryption systems. We use t and τ (resp. t′ and τ ′) to denote the encryption

3

LPN constructions |pk| |ct| Enc. Time Dec. Time

[17]+[6] +CPA-DEM n(3m+ λ) 3m+ λ+ |tag|+ |com|+ |φ| τ + tcom τ ′ + tdecom
This work n(3m+ λ) 3m+ λ+ |tag|+ |φ| τ τ ′

Table 2: Comparison between LPN-based HE systems

and decryption time of our LWE-based construction (resp. LPN-based construc-
tion). tcom and tdecom denote the time used to compute the commitments and de-
commitment in the Boneh-Katz transformation (using the commitment scheme
recommended in [6], computing the commitment and the commitment contains
computing a collision-resistant hash and evaluating a universal hash function).
tsis denotes the time of computing the function f(x) = Ax where A ∈ Zn×mq

and x ∈ Zm. We also consider whether the system can be adapted to the ring
LWE setting. Enabling realisation over rings may help to improve the space ef-
ficiency of the systems. The comparisons show our HE systems are either more
efficient or more flexible (i.e., support ring LWE). We note that our HE system
and the HE system based on Boneh-Katz transformation lose a factor of the
number of decryption queries, in security reduction, i.e., it is not tight, while the
construction obtained from [7] loses a constant factor.

1.2 Our Approach

We provide the intuition of our approach. The ciphertext of the KEM part of
our LWE-based HE system contains LWE samples c0, c1 where

[c∗ᵀ0 |c
∗ᵀ
1] = sᵀ[A|A1 +H(c∗0)G] + [eᵀ

0 |e
ᵀ
1]

where A, A1 = AR are public matrices, G is the gadget matrix [19], H is a
collision resistant hash function with full-rank difference property (see [3]). The
session key k∗ for the DEM, a random bit string, is embedded into the LWE
secret vector s, e.g., by s = s̃ + k∗bq/2c. Using the trapdoor R, the private key,
k∗ can be recovered. The KEM is not CCA secure: Adding a small vector to e1

results in a correct ciphertext of k∗. In addition to the KEM, our DEM uses a
secret-key encryption (SKE) system to encrypt the actual message M and uses
an authentication code (MAC) to authenticate the ciphertext:

φ∗ ← SKE.Enc(dk,M) and σ∗ ← MAC.Sign(mk, c0||c1||φ)

where MAC key mk and SKE key dk are derived from k∗ via a key derivation
function (KDF). In a nutshell, the construction is reminiscent of the Boneh-Katz
transformation [6] that turns any selectively secure identity-based encryption
into a CCA-secure PKE using a MAC and a commitment scheme. c∗0 constitutes
LWE samples and, thus, can be seen as a statistically binding (by that the
LWE problem has unique solutions) and computationally hiding (by the LWE
assumption) commitment of the session key k∗. The intuition of security, given

4

the ciphertext c∗0, c
∗
1, φ
∗, σ∗, is that (1) any decryption query with c0 6= c∗0 is not

helpful as the security reduction will use the technique from [3] to embed c∗0 into
the A1, i.e., A1 = AR−H(c∗0)G, so it can decrypt using the trapdoor R, and
(2) if the adversary makes a decryption query with c0 = c∗0, since c∗0 uniquely
determines k∗ by the binding property of LWE, the adversary has to know k∗

to forge the MAC or break the security of the SKE. However, k∗ is hidden by
LWE assumption.

2 Preliminaries

We use symbol ”ᵀ” for matrix/vector transpose, e.g., Aᵀ means the transpose of
A. We denote by x← X the process of sampling x according to the distribution
X. Let x ∼ X denote sample x satisfies distribution X. We use U(X) to denote
the uniform distribution over the set X. We will be using standard asymptotic
notations, e.g., O, Ω, ω.

Let X and Y be two random variables over some finite set S. The statistical
distance betweenX and Y is defined as∆(X,Y) = 1

2

∑
s∈S |Pr[X = s]− Pr[Y = s]| .

Let Xλ and Yλ be ensembles of random variables indexed by the security param-
eter λ. We say that X and Y are negl(λ)-statistically close (or simply statistically
close) if ∆(Xλ, Yλ) = negl(λ). We use the following lemma in our security proofs.

Lemma 1 (Special case of Lemma 4.4 of [20]). For x← DZm,s, Pr[‖x‖ >
s
√
m] < 1− 2−Ω(m).

Lemma 2 (Proposition 5.1 of [14]). Let q ≥ 2. For all but a 2q−n fraction
of all A ∈ Zn×mq and for any s ≥ ω(

√
log n), the distribution of Ae mod q is

statistically close to uniform over Znq , where e ∼ DZm,s.

We will use the super-increasing vector gᵀ = (1, 2, 4, . . . , 2k−1), for k =
dlog2 qe and extend it to form a “gadget” matrix G = diag(gᵀ, . . . ,gᵀ) ∈ Zn×nkq

as in [19]. Here we use a base 2 but other choices of base can be used. We for-
mulate the following lemma which is directly derived from the Theorem 4.1 and
Theorem 5.4 and of [19].

Lemma 3. Let w = ndlog qe. Let F = [A|AR + HG] where R ∈ Zm×w, H ∈
Zn×nq is invertible in Zq, and G ∈ Zn×wq is the gadget matrix. Given bᵀ =
sᵀF + eᵀ where eᵀ = [eᵀ

0 |e
ᵀ
1], there exists an efficient algorithm Invert(R,F,b)

that outputs s and e when ‖eᵀ
1 − eᵀ

0R‖∞ < q/4.

Definition 1 ((Normal Form) Learning-With-Errors Problem). Let λ be
the security parameter, n = n(λ), m = m(λ), q = q(λ) and an error distribution
χ = χ(n) over Zq. The advantage of an adversary A for the (normal-form)

NLWEn,m,q,χ problem, denoted by Adv
NLWEn,m,q,χ
A (λ), is defined as

|Pr[A(A, sᵀA + eᵀ) = 1]− Pr[A(A,bᵀ) = 1]|

where A ← Zn×mq , s ← χn, e ← χm. The NLWEn,m,q,χ problem is hard if

Adv
NLWEn,m,q,χ
A (λ) ≤ negl(λ) for all p.p.t adversary A.

5

We note the normal-form LWE problem is equivalent to the standard form of
the LWE problem. A series of works have established the hardness of the LWE
problem. We refer to [23,22] for details.

2.1 Definitions of Cryptographic Primitives

Public-Key Encryption (PKE). A PKE system PKE = (PKE.Gen,PKE.Enc,
PKE.Dec) consists of three algorithms. The probabilistic key generation algo-
rithm PKE.Gen(1λ) takes as input a security parameter λ, returns a key pair
(pk, sk). The probabilistic encryption algorithm PKE.Enc(pk,M) returns a ci-
phertext ct. The deterministic decryption algorithm PKE.Dec(pk, sk, ct) recovers
the message M , or returns ⊥, indicating decryption fails. The correctness of PKE
requires that for all λ ∈ N, all (pk, sk)← PKE.Gen(1λ),

Pr[PKE.Dec(pk, sk,PKE.Enc(pk,M)) = K] ≥ 1− negl(λ)

where the probability is over the randomness of PKE.Gen and PKE.Enc.

Definition 2. We say PKE is chosen-ciphertext-attack secure (CCA-secure) if
for all PPT adversary A, the advantage function

Advind−cca
PKE,A (λ) =

∣∣∣Expind−cca
PKE,A λ)− 1/2

∣∣∣ ≤ negl(λ)

where the experiment Expind−cca
PKE,A λ) is defined in Fig. 1. In the experiment, the

adversary is not allowed to query ct∗ to the oracle O in step 4.

Experiment Expind−cca
PKE,A λ):

1. (pk, sk)← PKE.Gen(1λ)
2. (M0,M1)← AO(pk)
3. b← U({0, 1}), ct∗ ← PKE.Enc(pk,Mb)
4. b′ ← AO(pk, ct∗, pk)
5. Return 1 if b′ = b; Otherwise, return 0.

Oracle O(ct):

1. Return PKE.Dec(pk, sk, ct)

Fig. 1: CCA Security Definitions for PKE

Secret-Key Encryption (SKE). A SKE system SKE = (SKE.Enc,SKE.Dec)
with key space Kske and ciphertext space Cske (typically Kske = {0, 1}λ for the
security λ) consists of two algorithms. The deterministic encryption algorithm
SKE.Enc(dk,M) uses a key dk ∈ Kske to encrypt message M into a ciphertext
φ. The deterministic decryption algorithm SKE.Dec(dk, φ) recovers message M ,
or return ⊥, indicating decryption fails. We require that for all dk ∈ Kske and
message M , SKE.Dec(dk, SKE.Enc(dk,M))→M .

6

Definition 3. We say a secret-key encryption scheme SKE is one-time secure
if for all PPT adversary A the advantage function

Advot−ind
SKE,A (λ) =

∣∣∣Pr[Expot−ind
SKE,A (λ) = 1]− 1/2

∣∣∣ ≤ negl(λ)

where the experiment Expot−ind
SKE,A (λ) is defined as in Fig. 2.

Experiment Expot−ind
SKE,A (λ):

1. M ← A(1λ)
2. dk ← Kske, b ← U({0, 1}), φ0 ← SKE.Enc(dk,M), φ1 ←
Cske

3. b′ ← A(1λ, φb)
4. Return 1 if b′ = b; Otherwise, return 0

Fig. 2: Security Experiments of SKE

Message Authentication Codes (MACs). In a MAC system MAC = (MAC.Sign,
MAC.Ver) with key space Kmac (typically Kmac = {0, 1}λ for the security parame-
ter λ), the algorithm MAC.Sign(K,x) takes as input a key K ∈ Kmac, a message
x and some random coins, and returns a tag σ. The deterministic algorithm
MAC.Ver(K,σ, x) returns 1 if σ ← MAC.Sign(K,x), or outputs 0, otherwise.

Definition 4. Let λ be the security parameter. We say a mac MAC is secure
with one-time strong unforgeablility if for all PPT adversary A, the advantage
function

Advot−suf
MAC,A(λ) = Pr[Expot−suf

MAC,A(λ) = 1] ≤ negl(λ)

where the experiment Expot−suf
MAC,A(λ) is defined as in Fig. 3.

Experiment Expot−suf
MAC,A(λ):

1. mk ← Kmac, x← A(1λ)
2. σ ← MAC.Sign(mk, x)
3. (x′, σ′)← A(1λ, σ)
4. If MAC.Ver(K,x′, σ′) and (x, σ) 6= (x′, σ′), return 1
5. Otherwise, return 0

Fig. 3: Security Experiments of MAC

Collision Resistant Hashing. Let H : {0, 1}∗ → {0, 1}` be a hash function
(where ` is a function of the security parameter).

7

Definition 5. We say that H is collision resistant if for all p.p.t algorithms A,
the advantage,

Advcoll
A (λ) = Pr[A(1λ, H)→ (x, x′) : x 6= x and H(x) = H(x′)] ≤ negl(λ)

where x← {0, 1}∗ and λ is the security parameter.

Key Derivation Functions. Our constructions use key derivation functions
(KDFs) to expand short random keys to longer pseudorandom keys for message
authentication codes and secret-key encryption. Basically, a KDF is a pseudo-
random number generator.

Definition 6. Let λ be the security parameter. Let K be a set with size {0, 1}≥λ.
We say a key derivation function KDF : K → {0, 1}` is secure if the advantage
function

Advind
KDF,A(λ) = |Pr[A(1λ,KDF(k))] = 1− Pr[A(1λ, r) = 1]| ≤ negl(λ)

where k ← U(K) and r ← U({0, 1}`).

3 CCA-Secure Hybrid Encryption from LWE

The system uses the following public parameters shared by all system instances.

1. We use NLWEn,m,q,DZ,αq problem for some polynomial-size (in n) prime q.
n, q,m, α are determined to ensure NLWEn,m,q,DZ,αq problem is hard. Let
w = ndlog qe and m ≥ n log q + ω(

√
log n).

2. A full-rank difference encoding as defined in [3] FRD : Znq → Zn×nq that for
any x,y ∈ Znq with x 6= y, FRD(x) − FRD(y) is invertible over Zn×nq . In
particular, FRD(x) is invertible over Zn×nq if x 6= 0.

3. A collision resistance hash function H : {0, 1}∗ → Znq \{0} where 0 is the zero
matrix in Znq , a secret-key encryption system SKE = (SKE.Enc,SKE.Dec)
with key space Kske, message spaceMske, and ciphertext space Cske, a secure
message authentication code MAC = (MAC.Sign,MAC.Ver) with key space
Kmac. A key derivation function KDF : {0, 1}n → Kske ×Kmac.

– PKE.Gen(1λ):
1. A← U(Zn×mq), R← Dm×w

Z,ω(
√

logn)

2. A1 ← AR.
3. pk← (A,A1), sk← R

– PKE.Enc(pk,M):
1. k← U({0, 1}n), (dk,mk)← KDF(k)
2. s̄← Dn

Z,αq, s← kbq/2c+ s̄.
3. e0 ← Dm

Z,αq, cᵀ0 ← sᵀA + eᵀ
0 .

4. e1 ← Dw
Z,s where s2 = (‖e0‖2 +m(αq)2) · ω(

√
log n)2.

5. cᵀ1 ← sᵀ(A1 + FRD(H(c0)G) + eᵀ
1 .

6. φ← SKE.Enc(dk,M), σ ← MAC.Sign(mk, c0||c1||φ).

8

7. ct← (c0, c1, φ, σ).
– PKE.Dec(pk, sk, ct):

1. Parse ct = (c0, c1, φ, σ); Output ⊥ if ct doesn’t parse.
2. Recover (s, e0, e1)← Invert(R, [A|A1 + FRD(H(c0))G], [cᵀ0 |c

ᵀ
1]).

3. If ‖e0‖ > αq
√
m or ‖e1‖ > αq

√
2mw · ω(

√
log n), output ⊥.

4. Set k[i]← 0 if s[i] is closer to 0 or k[i]← 1 if s[i] is closer to q/2.
5. Output ⊥ and aborts if ‖s− k‖ > αq

√
n; Else, output k and continue.

6. (dk,mk)← KDF(k).
7. Return M ← SKE.Dec(dk, φ) if 1← MAC.Ver(mk, c0||c1||φ), or else ⊥.

Correctness. We show that by the chosen parameters, given an honestly gener-
ated ciphertext ct = (c0, c1, φ, σ), the algorithm Invert(R, [A|A1+FRD(c0)G], [cᵀ0 |c

ᵀ
1])

correctly returns the s. The rest part of correctness readily follows from the cor-
rectness of SKE and MAC. Recall that [cᵀ0 |c

ᵀ
1] = sᵀ[A|A1+FRD(H(c0))G] + [eᵀ

0|e
ᵀ
1]

where e0 ∼ Dm
Z,αq and e1 ∼ Dw

Z,s where s2 = (‖e0‖2 + m(αq)2) · ω(
√

log n)2.

According to Lemma 1, with overwhelming probability, ‖e0‖ ≤ αq
√
m and

‖e1‖ ≤ s
√
w. So, the error term is bounded

‖eᵀ
1 − eᵀ

0R‖∞ ≤ ‖e
ᵀ
1 − eᵀ

0R‖ ≤ ‖eᵀ
1‖+ ‖eᵀ

0R‖ ≤ 2αq ·O(
√
w) · ω(

√
log n) ·

√
3w

= q · α ·O(w) · ω(
√

log n)

with overwhelming probability. For large enough 1/α = O(w) · ω(
√

log n), the
error term is smaller than q/4 as required by Lemma 3. With s = kbq/2c+ s̄, k
can be recovered with overwhelming probability since ‖s̄‖ ≤ αq

√
n < q/4 with

overwhelming probability.

3.1 Security Proof

Theorem 1. Under the assumptions that the problem NLWEn,m,q,DZ,αq is hard,
MAC, SKE are secure w.r.t Definition 4 and 3, respectively, and H is collision
resistant w.r.t Definition 5, the hybrid encryption system PKE is CCA secure
w.r.t to Definition 2.

Proof. Let λ be the security parameter. Let A be any PPT adversary who
has advantage Advind−cca

PKE,A (λ) against the proposed public-key (hybrid) encryp-

tion scheme. We show how to bound Advind−cca
PKE,A (λ) by the hardness of the

NLWEn,m,q,DZ,αq problem, the one-time security of MAC and SKE, and the col-
lision resistance of H.

We proceed with a sequence of security games. Fig. 4 describes how pk, sk,
and the challenge ciphertext ct∗ are generated, and Fig. 5 describes how decryp-
tion queries are responded in the security games. We denote by Ei that some
event E happens in Game i. Each security game eventually outputs a binary
value. We denote by Si the event that Game i outputs 1 (which means that the
adversary wins the chosen-ciphertext security game). Throughout the proof, we
say a ciphertext is valid if it can be properly decrypted to some message.

9

Constructions of pk, sk (and c∗0 , since Game 1)

Game 0:

1. A← U(Zn×mq), R← Dm×wZ,ω(
√

logn)

2. A1 ← AR.
3. pk = (A,A1), sk← R.

Game 1 – Game 3:

1. A← U(Zn×mq), R← Dm×wZ,ω(
√

logn)

2. k∗ ← U({0, 1}n),
(dk∗,mk∗)← KDF(k∗)

3. DnZ,αq , s← k∗bq/2c+ s̄.

4. e0 ← DmZ,αq , c∗ᵀ0 ← sᵀA + eᵀ
0 .

5. A1 ← AR.
6. Store s, (dk∗,mk∗) and c∗0 for ct∗.
7. pk = (A,A1), sk← R.

Game 4:

1. A← U(Zn×mq), R← Dm×wZ,ω(
√

logn)

2. k∗ ← U({0, 1}n),
(dk∗,mk∗)← KDF(k∗)

3. DnZ,αq , s← k∗bq/2c+ s̄.

4. e0 ← DmZ,αq , c∗ᵀ0 ← sᵀA + eᵀ
0 .

5. A1 ← AR− FRD(H(c∗0)G

6. Store s, (dk∗,mk∗), c∗0 for ct∗.
7. pk = (A,A1), sk← R.

Game 5:

1. A← U(Zn×mq), R← Dm×wZ,ω(
√

logn)

2. k∗ ← U({0, 1}n), (dk∗,mk∗)← KDF(k∗)
3. DnZ,αq, s← k∗bq/2c+ s̄

4. c̃∗0 ← U(Zmq), c∗ᵀ0 ← c̃∗0 + (k∗bq/2c)ᵀA

5. A1 ← AR− FRD(H(c∗0))G.
6. pk = (A,A1), sk← R
7. Store �s, (dk∗,mk∗) and c∗0 for ct∗

Game 6:

1. A← U(Zn×mq), R← Dm×wZ,ω(
√

logn)

2. k∗ ← U({0, 1}n), (dk∗,mk∗)← KDF(k∗)

3. c∗0 ← U(Zmq)

4. A1 ← AR− FRD(H(c∗0))G.
5. pk = (A,A1), sk← R
6. Store (dk∗,mk∗) and c∗0 for ct∗

Game 7:

1. A← U(Zn×mq), R← Dm×wZ,ω(
√

logn)

2. k∗ ← U({0, 1}n), dk∗ ← U(Kske),
mk∗ ← U(Kmsc).

3. c∗0 ← U(Zmq)

4. A1 ← AR− FRD(H(c∗0))G.
5. Store (dk∗,mk∗) and c∗0 for ct∗.
6. pk = (A,A1), sk← R.

Constructions of ct∗ in Games

Game 0: // Using algorithm Enc

1. b← U({0, 1})
2. k∗ ← U({0, 1}n), (dk∗,mk∗)← KDF(k∗)
3. DnZ,αq , s← kbq/2c+ s̄.

4. e0 ← DmZ,αq , cᵀ
0 ← sᵀA + eᵀ

0 .

5. e1 ← DwZ,s.

6. cᵀ
1 ← sᵀ(A1 + FRD(H(c0)G) + eᵀ

1 .
7. φ← SKE.Enc(dk,Mb),

σ ← MAC.Sign(mk, c0||c1||φ).
8. ct← (c0, c1, φ, σ).

Game 1 – Game 4

1. b← U({0, 1})
2. Retrieve dk∗, mk∗, c∗0

3. e1 ← DwZ,s.

4. c∗ᵀ1 ← sᵀ(A1 + FRD(H(c∗0)G) + eᵀ
1 .

5. φ∗ ← SKE.Enc(dk∗,Mb),
σ∗ ← MAC.Sign(mk∗, c∗0 ||c

∗
1 ||φ

∗).
6. ct∗ ← (c∗0 , c

∗
1 , φ
∗, σ∗).

Game 5 – Game 7:

1. b← U({0, 1})
2. Retrieve dk∗, mk∗, c∗0
3. e1 ← DwZ,s.

4. c∗1 ← U(Zwq)

5. φ∗ ← SKE.Enc(dk∗,Mb),
σ∗ ← MAC.Sign(mk∗, c∗0 ||c

∗
1 ||φ

∗).
6. Retrieve c∗0
7. ct∗ ← (c∗0 , c

∗
1 , φ
∗, σ∗).

Game 8:

1. b← U({0, 1})
2. Retrieve dk∗, mk∗, c∗0
3. c∗1 ← U(Zwq)

4. φ∗ ← Cske ,

σ∗ ← MAC.Sign(mk∗, c∗0 ||c
∗
1 ||φ

∗).
5. Retrieve c∗0
6. ct∗ ← (c∗0 , c

∗
1 , φ
∗, σ∗).

Fig. 4: Generating Keys (and c∗0) and ct∗ in Games

10

Descriptions of decryption oracle O in Games

Game 0 – Game 1: // Real decryption algorithm Dec

1. Parse ct = (c0, c1, φ, σ); Output ⊥ if ct doesn’t parse.
2. Recover (s, e0, e1)← Invert(R, [A|A1 + FRD(H(c0))G], [cᵀ

0 |c
ᵀ
1]).

3. If ‖e0‖ > αq
√
m or ‖e1‖ > αq

√
2mw · ω(

√
logn), output ⊥.

4. Set k[i]← 0 if s[i] is closer to 0 or k[i]← 1 if s[i] is closer to q/2.
5. Output k if ‖s− k‖ ≤ αq

√
n; Otherwise output ⊥.

6. (dk,mk)← KDF(k).
7. Return M ← SKE.Dec(dk, φ) if 1← MAC.Ver(mk, c0||c1||φ), or else ⊥.

Game 2:

1. Parse ct = (c0, c1, φ, σ); Output ⊥ if ct doesn’t parse.
2. Return ⊥ if

– ct∗ is not released and H(c0) = H(c∗0).

– ct∗ has been released, and H(c0) = H(c∗0) where c0 6= c∗0 .

3. (Same as Game 1, step 2 to Step 7)

Game 3 – Game 7:

1. Parse ct = (c0), c1, φ, σ); Output ⊥ if ct doesn’t parse.
2. Return ⊥ if

– ct∗ is not released and H(c0) = H(c∗0).
– ct∗ has been released, and H(c0) = H(c∗0) where c0 6= c∗0 .

3. Return ⊥ if the query ct is made after seeing ct∗ where c0 = c∗0 .a

4. (Same as Game 1, step 2 to Step 7)

a Even ct is a valid ciphertext.

Fig. 5: Descriptions of decryption oracle O in Games

Game 0. The first game, Game 0, follows the security experiment Expind−cca
PKE,A (λ).

That is, A is given a public key pk and starts making decryption queries to O.
The decryption queries are answered by PKE.Dec. After that, A submits two
messages M0,M1 of equal length. The challenge ciphertext ct∗ = (c∗0, c

∗
1, φ
∗, σ∗)

is constructed by PKE.Enc(pk,Mb) for b← U({0, 1}), and sent back to A. Con-
cretely, ct∗ is computed as A then continues making decryption queries ct to the
oracle O with the restriction that ct 6= ct∗. The decryption queries ct 6= ct∗ to O
are responded with PKE.Dec(pk, sk, ct). Finally, A outputs b′. The game returns
1 if b′ = b, or 0, otherwise. By definition, we have

Pr[S0] = Pr[Expind−cca
PKE,A (λ) = 1] (1)

Game 1. Game 1 modifies Game 0 on the ways that pk, sk, and challenge cipher-
text ct∗ are generated, as specified in Fig. 4. Decryption queries in this game are
responded to as in Game 0. It can be seen that the modification does not change
A’s view: the precomputed k∗ and c∗0 are distributed as they are in Game 0.
They are independent of pk and unavailable to A until ct∗ gets released. So,

Pr[S1] = Pr[S0]. (2)

Game 2. As detailed in Fig. 5, Game 2 is identical to Game 1 except for de-
cryption oracle O, the two types of decryption queries are rejected with return-
ing ⊥ regardless whether they are valid ciphertexts: (1) ct = (c0, c1, φ, σ) with

11

H(c0) = H(c∗0) made before seeing ct∗ (where c0 can be the same as or different
from c∗0); and (2) ct = (c0, c1, φ, σ) with c0 6= c∗0 and H(c0) = H(c∗0). We prove
the following Lemma.

Lemma 4. Let Q1 (resp. Q2) be the maximun number of decryption queries
made before (resp. after) seeing ct∗. We have for some adversary B1 against H.

|Pr[S2]− Pr[S1]| ≤ Q1

qm
+Q2 · Advcoll

H,B1
(λ) (3)

Proof. Assume Q1, Q2 be the number of decryption queries (both are polynomi-
als in λ) that the adversary can make in the first decryption query phase (i.e.,
before seeing ct∗) and the second decryption query phase (i.e., after seeing ct∗),
respectively. First of all, recall that Game 2 pre-computes c∗0 and releases it as
a part of the challenge ciphertext ct∗, after the first decryption query phase is
over. Therefore, c∗0 ∈ Zmq is independent of A’s view during the first decryption
phase, and, A makes type-(1) query (in the first decryption query phase) with
at most Q1/q

m.
Next, we construct an adversary B1 to break the collision resistance of H if

the type-(2) query is very made. calB1 receives the security parameter λ and a
collision-resistance hash function H : Zmq → Znq \{0}. It runs follows the process
specified in Fig. 4 (for Game 1, which is same for Game 2) to produce pk, sk and
ct∗ = (c∗0, c

∗
1, φ
∗, σ∗). It also follows Fig. 5 to respond decryption queries made

before the release of ct∗. Whenever the adversary A makes a type-(2) decryption
query ct = (c0, c1, φ, σ), such that c0 6= c∗0 and H(c0) = H(c∗0), B aborts the
Game and return (c0, c

∗
0) as a collision for H. Since A can make at most Q2

decryption queries after seeing the challenge ciphertext, we have A makes a
type-(2) query with probability at most Q2 ·Advcoll

H,B1
(λ). We conclude the proof

by the Difference Lemma, i.e., [24], Lemma 1. ut

Looking ahead, after Game 2, any decryption query in which c0 = c∗0 in the
pre-challenge decryption query phase is rejected, and any decryption query with
H(c0) 6= H(c∗0) after the challenge ciphertext has released are rejected.

Game 3. Game 3 is identical to Game 2 except that the decryption oracle
O is implemented slightly differently. Let ct∗ = (c∗0, c

∗
1, φ
∗, σ∗) be the chal-

lenge ciphertext in which the session key k∗ ∈ {0, 1}n is encapsulated in c∗0
for generating dk∗ and mk∗. We focus on the decryption queries of the form
ct = (c∗0, c1, φ, σ) that are issued after the challenge ciphertext ct∗ is released.
In Game 3, the oracle rejects (by returning ⊥) such decryption queries. Fig. 5
specifies in more details how the queries are simulated in Game 3.4 We define
Valid the event that A submits a valid decryption query ct = (c∗0, c1, φ, σ) (c1,
φ, and σ are arbitrary) after seeing ct∗. In Game 3, we cannot determine ex-
actly the probability of the event Valid, i.e., Pr[Valid3]. However, we can bound
it considering two sub-events:

4 Note that the decryption queries ct made before the release of ct∗ where H(c0) =
H(c∗0) are already responded with ⊥, and ct 6= ct∗ as querying ct∗ is not allowed.

12

– NoBind: a session key k 6= k∗ is associated to c∗0, i.e. c∗0 = (s̃+kbq/2c)ᵀA+eᵀ
0

for some s̃ ∼ Dn
Z,αq and e0 ∼ Dm

Z,αq.
– Forge: the session key k∗ associated to ct∗ has also been used for ct. And

since the query is valid, we have that 1 ← MAC.Ver(dk∗, σ, c∗0||c1||φ) where
(dk∗,mk∗)← KDF(k∗).

Note that we have Pr[Valid3] ≤ Pr[NoBind3] + Pr[Forge3]. It is the fact that over
the random choice of matrix A and e0, c∗ᵀ0 = sᵀA + eᵀ

0 uniquely determines
s, and, thus k∗, (see e.g., [25], Lemma 6). Therefore, Pr[NoBind3] is negligible.
Meanwhile, we can see that Game 3 and Game 2 are identical until Valid occurs.
Hence, we have

|Pr[S3]− Pr[S2]| ≤ Pr[Valid3] ≤ Pr[Forge3] + negl(λ) (4)

for some negligible function negl(λ).

Game 4. Game 4 is identical to Game 3 except it slightly modifies the construc-
tion of matrix A1 when defining pk, as specified in Fig. 4. Notice that the distri-
butions of A1 in Game 4 (A1 = AR−FRD(H(c∗0))G) and Game 3 (A1 = AR)
are both statistically close to U(Zn×wq). So, the distributions of pk in Game 4
and Game 3 are statistically close. The decryption oracle in Game 4 can handle
the same set of decryption queries as Game 3, except for decryption query of the
form ct = (c0, c1, φ, σ) where H(c0) = H(c∗0). This is because for any such de-
cryption query, [A|A1 +FRD(H(c0))G] = [A|AR+(FRD(H(c0))−FRD(c∗0))G]
where FRD(H(c0)) − FRD(c∗0) is invertible over Zn×nq . Thus, the trapdoor R
can be used, same as in Dec, to recover the encryption randomness s, e0, e1,
and, then the message. However, such a decryption query has already been han-
dled by returning ⊥ by the implementation of O. Therefore, the modification
introduced in Game 4 does not statistically change A’s view, and hence,

|Pr[S4]− Pr[S3]| ≤ negl(λ) and |Pr[Forge4]− Pr[Forge3]| ≤ negl(λ) (5)

where the function negl(λ) accounts for the negligible statistical errors.

Game 5. In Game 5, we further modify the way that pk and ct∗ are gener-
ated, as specified by Fig. 4. The decryption queries in Game 5 are responded
as in Game 4. In particular, we chose pk with the same distribution of pk in
Game 5 is identical to that of pk in Game 4. Note that in Game 4, the cipher-
text components c∗0, c∗1 are LWE samples while, in Game 5, they are distributed
uniformly random. We can show Pr[S4] and Pr[S5], Pr[Forge4] and Pr[Forge5]
are close under the LWE assumption via Lemma 5.

Lemma 5. For Game 4 and Game 5 defined as per Fig. 4 and Fig. 5, we have

|Pr[S5]− Pr[S4]| ≤ Adv
NLWEn,m,q,DZ,αq
B2

(λ) (6)

|Pr[Forge5]− Pr[Forge4]| ≤ 2 · Adv
NLWEn,m,q,DZ,αq
B′2

(λ) (7)

for some adversary B2 and B′2 against the LWE problem.

13

Proof. We show that |Pr[S5]−Pr[S4] is negligible if NLWEn,m,q,DZ,αq assumption
holds. We do this by constructing an efficient algorithm B2 who interacts with the
PKE adversary A. B2 receives an instance of LWEn,m,q,DZ,αq (B,bᵀ) ∈ (Zn×mq ×
Zmq). It decides that if b is uniformly random (independent of B) or there exists
x ∼ Dn

Z,αq and y ∼ Dm
Z,αq such that bᵀ = xᵀB + yᵀ. B2 works as follows.

– It follows Game 5 (as specified in Fig. 4) to generate pk, sk except that it
sets A← B, c̃∗0 ← b.

– It follows Game 5 (as specified in Fig. 4) to generate ct∗ except for c∗1 (note
that c∗0 has been constructed when generating pk). To construct c∗1, B2 sam-
ples v← Dw

Z,αq
√
m·ω(

√
logn)

and sets c∗ᵀ1 ← c∗ᵀ0 R + vᵀ.

– It follows Game 5 (as specified in Fig. 5) for answering decryption queries.
– Finally, B2 outputs 1 when the security game outputs 1 (i.e., A outputs
b′ = b). Otherwise B2 outputs 0.

We analyse the reduction. First, recall that the distributions of pk in Game 4 and
Game 5 are identical. Second, the same set of decryption queries are handled in
Game 4 and Game 5, and the responses of decryption queries in the two games
have the same distribution. Moreover, we can see that the distributions of φ∗

and σ∗ are identical in Game 4 and Game 5. Finally, if the challenge (A,b) is
random, the challenge ciphertext ct∗ distributes as in Game 5. Hence, we have
Pr[S5] = Pr[B2(B,bᵀ) = 1].

On the other hand, if bᵀ = xᵀB + yᵀ, we implicitly set s̃ ← x and e0 ← y,
and we have

c∗ᵀ0 = c̃∗0 + (k∗bq/2c)ᵀA = s̃ᵀA + eᵀ
0 + (k∗bq/2c)ᵀA

= sᵀA + eᵀ
0

where s = s̃ + (k∗bq/2c) and

c∗ᵀ1 = c∗ᵀ0 R + vᵀ = (sᵀA + eᵀ
0)R + vᵀ = sᵀ(AR) + (eᵀ

0R + vᵀ)

= sᵀ(A1 + FRD(H(c∗0))G) + eᵀ
1

By adapting Theorem 3.1 of [21] and Corollary 3.10 of [23], conditioned on A1,

e1 has a distribution that is statistically close to Dw
Z,s, where s2 = (‖e0‖2 +

m(αq)2) ·ω(
√

log n)2. Therefore, we have Pr[S4] = Pr[B2(B,xᵀB+yᵀ) = 1], the
Inequality 6 follows.

Next, we show Pr[Forge4] and Pr[Forge5] are close. Let B′2 be an LWE-problem
solver interacting with the PKE scheme adversary A. B′2 receives an instance of
LWEn,m,q,DZ,αq (B,bᵀ) ∈ (Zn×mq ×Zmq). It needs to decide that if b is uniformly
random (independent of B) or there exists x ∼ Dn

Z,αq and y ∼ Dm
Z,αq such that

bᵀ = xᵀB + yᵀ. B′2 works as follows:

– It follows Game 5 (as specified in Fig. 4) to generate pk, sk except that it
sets A← B, c̃∗0 ← b.

– It follows Game 5 (as specified in Fig. 4 to generate ct∗ except for c∗1. To
construct c∗1, B2 samples v← Dw

Z,αq
√
m·ω(

√
logn)

and set c∗ᵀ1 ← c∗ᵀ0 R + vᵀ.

14

– Decryption queries made before the release of ct∗ are answered by fol-
lowing the Game 5 specification (i.e., Fig. 5). For any decryption query
ct = (c∗0, c1, φ, σ) 6= ct∗, check if MAC.Ver(mk∗, σ, c0||c1||φ) = 1. If so, abort
the experiment and output 1. Otherwise, return ⊥ to A. 5

– Eventually, if A halts and B′2 has not previously aborted the experiment, B′2
outputs a random bit.

Notice that if the given challenge (B,bᵀ) are LWE samples, B′2 simulates Game
4 and aborts when Forge4 happens (i.e., MAC.Ver(mk∗, σ, c∗0||c1||φ) = 1). So,
Pr[B′2(B,bᵀ) = 1] = Pr[B′2(B,bᵀ) = 1|¬Forge4]·Pr[¬Forge4]+Pr[1← B′2|Forge4]·
Pr[Forge4] = 1

2 + 1
2 · Pr[Forge4]. Similarly, we have Pr[B′2(B,xᵀB + yᵀ) = 1] =

1
2 + 1

2 · Pr[Forge5]. This leads to the Inequality 7. ut

Game 6. In Game 6, we modify the way that c∗0 in ct∗ are generated (as shown
in Fig. 4). Specifically, c∗0 ← U(Zmq). The other parts of ct∗ and decryption
queries are handled as in Game 5. Notice that in both Game 5 and Game 6, c∗0
are uniformly random over Zmq (recall in Game 5, c∗0 ← c̃∗0 + Aᵀ(k∗bq/2c) for
c̃∗0 ← U(Zmq) and c̃∗0 is not used in anywhere else). Hence, the distributions of
the two games are identical, and, we have

Pr[S6] = Pr[S5] and Pr[Forge6] = Pr[Forge5] (8)

Game 7. In Game 7, we modify the way of generating the symmetric encryption
key dk∗ and the MAC key mk∗, as specified in Fig. 4. In particular, dk∗ and
mk∗ are chosen uniformly at random from the key spaces of SKE and MAC (as
opposed to computed by KDF(k∗)). The other parts are exactly the same as
Game 6. Since k∗ is independent of ct∗, this change is not noticeable to the
adversary by the security of KDF, as stated in the following lemma.

Lemma 6. For Game 6 and Game 7 defined as per Fig. 4 and Fig. 5, we have

|Pr[S7]− Pr[S6]| ≤ Advot−ind
KDF,B3

(λ) (9)

|Pr[Forge7]− Pr[Forge6]| ≤ 2 · Advind
KDF,B′3(λ) (10)

for some adversary B3 and B′3 against the LWE problem.

Proof. We first show that Pr[S7] and Pr[S6] are computationally close. Let B3

be an adversary against KDF. First, B3 receives a string r ∈ {0, 1}|Kske|+|Kmac| and
it needs tell if r is random or r = KDF(k∗) for some k∗ ∈ {0, 1}n. B3 proceeds
with as follows

– It follows Game 6 to generate pk, sk, c∗0 (as specified in Fig. 4) except that
in step 2, it simply sets the first |Kske| bits (resp. the last |Kmac—) bits of r
to be dk∗ (resp. mk∗). Then, it sets A← B, c̃∗0 ← b.

– It follows Game 7 specification to generate ct∗ (as specified in Fig. 4) .

5 Note that any decryption query made before the release of ct∗ with H(c0) = H(c∗0)
is excluded since Game 2.

15

– It follows Game 7 specification (Fig. 5) to answer decryption queries.
– Finally, B2 outputs 1 when the security game outputs 1 (i.e., A outputs
b′ = b). Otherwise B2 outputs 0.

We can see that Pr[B3(1λ,KDF(k∗)) = 1] = Pr[S6] and Pr[B3(1λ, r)] = Pr[S7]
where r is random, and thus we get the inequality 9.

Similarly, we can show that Forge6 and Forge7 happen with essentially the
same probability provided KDF is secure. To this end, we build an efficient
algorithm B′3 that breaks KDF. B′3 proceeds as follows:

– It follows Game 6 to generate pk, sk, c∗0 (as specified in Fig. 4) except that
in step 2, it simply sets the first |Kske| bits (resp. the last |Kmac|) bits of r to
be dk∗ (resp. mk∗) . Then, it sets A← B, c̃∗0 ← b.

– It follows Game 7 to generate ct∗ (as specified in Fig. 4).
– Decryption queries made before the release of ct∗ are answered by following

Game 7 specification. For any decryption query ct = (c0, c1, φ, σ) 6= ct∗

made after the release of ct∗

1. if c0 6= c∗0 (which implies H(c0) 6= H(c∗0)), answer it by following Game
7 specification (Fig. 5).

2. For c0 = c∗0, check if MAC.Ver(mk∗, σ, c0||c1||φ) = 1. If so, abort the
experiment and output 1. Otherwise, return ⊥ to A.

– Finally, B′3 outputs 1 when the security game outputs 1 (i.e., A outputs
b′ = b). Otherwise B′3 outputs 0.

We can see that Pr[B′3(1λ, r ← KDF(k∗))] = 1
2 + 1

2 ·Pr[Forge6] and Pr[B′3(1λ, r ←
U)] = 1

2 + 1
2 · Pr[Forge7] for random r. This shows the inequality 10. ut

We note that in Game 7, since mk∗ is sampled at random and independent
of c∗0, c∗1 and φ∗, we can easily bound Pr[Forge7] by the security of MAC. We
prove the following Lemma.

Lemma 7. Let Q2 be the maximun number of decryption queries that the ad-
versary A can make after seeing ct∗ in Game 7. Then we have

Pr[Forge7] ≤ Q2 · Advot−suf
MAC,B4

(λ) (11)

for some adversary B4 against the unforgeability of MAC.

Proof. Let Q2 = Q2(λ) be the the upper bound on the number of decryption
query made by A after seeing the challenge ciphertext ct∗. We constructed an
efficient MAC-breaking algorithm B4 which works as follows:

– B4 chooses a random index j from {1, 2, ..., Q2}.
– It follows Game 7 to generate pk, sk, c∗0 (as specified in Fig. 4) except for
mk∗ (which is possessed by the MAC challenger). Note that dk∗ remains
randomly chosen as in Game 7.

– For decryption queries ct = (c0, c1, φ, σ) 6= ct∗ made by A before the release
of the challenge ciphertext. we know that H(c0) 6= H(c∗0). So, such decryp-
tion queries are answered in the usual way using the algorithm Invert with
the gadget trapdoor as in Game 7.

16

– It follows Game 7 to generate ct∗ (as specified in Fig. 4) except for σ∗ (i.e., B4

generates c∗1, φ∗ together with the already existed c∗0). To get σ∗, B4 sends
“message” c∗0||c∗1||φ∗ to its challenger and gets back σ∗. Then it releases
ct∗ = (c∗0, c

∗
1, φ
∗, σ∗) to A.

– For ith after-challenge decryption query where 1 ≤ i ≤ j − 1, B4 proceeds
as specified by Game 7. For the ith after-challenge decryption query ct =
(c0, c1, φ, σ), B4 submits (c0||c1||φ) to its MAC challenger and halts.

It can be seen that the probability of B4 in outputting a valid MAC forgery is
at least Pr[Forge7]/Q2 which shows Pr[Forge7] ≤ Q2 · Advot−suf

MAC,B4
(λ). ut

Game 8. Game 8 is identical to Game 7 except that the challenge ciphertext
components φ∗ are chosen randomly (as specified in Fig. 4). Since dk∗ is inde-
pendently and randomly chosen, a straightforward reduction shows that Game
6 and Game 7 are computationally indistinguishability. In particular,

|Pr[S8]− Pr[S7]| ≤ Advot−ind
SKE,B5

(λ). (12)

for some adversary against SKE. Finally, we can see that in Game 8, the chal-
lenge ciphertext ct∗ is independent of the bit value b. So, the adversary has no
advantage in winning the game. So,

Pr[S8] = 1/2 (13)

Combining inequalities (1) to (13) with triangle inequality, we obtain the bound

Advind−cca
PKE,A (λ) ≤ Q1

qm
+Q2 · Advcoll

H,B1
(λ) + Adv

NLWEn,m,q,DZ,αq
B2

(λ)

+ 2 · Adv
NLWEn,m,q,DZ,αq
B′2

(λ) + Advot−ind
SKE,B3

(λ) + 2 · Advot−ind
SKE,B3

(λ)

+Q2 · Advot−suf
MAC,B4

(λ) + Advot−ind
SKE,B5

(λ) + negl(λ)

where all terms are negligible based on our assumptions.

4 CCA-Secure Hybrid Encryption from Low-Noise LPN

This section shows how to combine our idea with the tag-based encryption sys-
tem from low-noise learning parity with noise problem due to Kiltz at al. [17]
to obtain a CCA-secure hybrid encryption system. Following Kiltz et al. [17],
we denote by Berp be the Bernouli distribution with parameter 0 ≥ p ≤ 1/2,
i.e. x ← Berp is the random variable over {0, 1} with Pr[x = 1] = p. The LPN
problem and its variant extended knapsack LPN problem used in our system are
as defined in Section 2.2, [17]. They have low noise rate p ≈ 1/

√
n. We denote

by |a| the hamming weight of vector a ∈ Zn2 .

The hybrid encryption system uses the following public parameters.

17

1. The security parameter λ, the dimension of LPN problem n, and parameter
m ≥ 2n. A constant c with 0 < c < 1/4 that defines: (1) the Bernoulli
parameter p =

√
c/m, and (2) the bound β = 2

√
cm for checking decryption

consistency, and (2) a binary linear error-correcting code with generation

matrix Ĝ1 : Zn×m2 which corrects up to αm errors for some 4c < α < 1.

Another error-correcting code with generation matrix Ĝ2 ∈ Zn×`2 (where Z`2
for ` ≥ λ is the session key space for the KEM part).

2. A full-rank difference encoding (see [3,17]) FRD : Zn2 → Zn×n2 that for any
x,y ∈ Zn2 with x 6= y, FRD(x)−FRD(y) is invertible over Zn×n2 . In particular,
FRD(x) is invertible over Zn×n2 if x 6= 0.

3. A collision resistance hash function H : {0, 1} → Zn2 \ {0} where 0 is the
zero vector of Zn2 , a secret-key encryption system SKE = (SKE.Enc,SKE.Dec)
with key space Kske, message spaceMske, and ciphertext space Cske, a secure
message authentication code MAC = (MAC.Sign,MAC.Ver) with key space
Kmac. A key derivation function KDF : {0, 1}` → Kske ×Kmac.

– PKE.Gen(1λ):
1. A← U(Zn×m2), A2 ← U(Zn×m2), U← U(Zn×`2).
2. T← Berm×mp , A1 ← AT.
3. pk← (A,A1,A2,U), sk← T.

– PKE.Enc(pk,M):
1. k← U({0, 1}`), (dk,mk)← KDF(k).
2. s← U(Zn2), T1,T2 ← Berm×mp , e0 ← Bermp .

3. eᵀ
1 ← eᵀ

0T1, e2 ← eᵀ
0T2, e3 ← Ber`p.

4. [cᵀ0 |c
ᵀ
2 |c

ᵀ
3]← sᵀ[A|A2|U] + [eᵀ

0 |e
ᵀ
2 |e

ᵀ
3 + kᵀĜ2]

5. cᵀ1 ← sᵀ(A1 + FRD(H(c0||c2||c3))Ĝ1) + eᵀ
1

6. φ← SKE.Enc(dk,M), σ ← MAC.Sign(mk, c0||c1||c2||c3||φ).
7. Return ct← (c0, c1, c2, c3, , φ, σ).

– PKE.Dec(pk, sk, ct):
1. Parse ct = (c0, c1, c2.c3, φ, σ); Output ⊥ if ct doesn’t parse.
2. Let H← FRD(H(c0||c2||c3)) ∈ Zn×n2 ; Set c̃ᵀ0 ← −cᵀ0T + cᵀ1 = (−eᵀ

0T +

eᵀ
1) + sᵀHĜ1; Use the error correction property of Ĝ1 to reconstruct

sᵀH (from the error −eᵀ
0T + eᵀ

1), and, then recover sᵀ ← sᵀHH−1.

3. If |cᵀ0 − sᵀA| ≤ β, |cᵀ1 − sᵀ(A1 + HĜ1)| ≤ αm/2, |cᵀ2 − sᵀA| ≤ αm/2,

compute c̃ᵀ2 ← cᵀ3 − sᵀU = eᵀ
3 + kᵀĜ2 and use the error correction

property of Ĝ2 to recover k and e3; Otherwise, return ⊥.
4. If |e3| > β, return ⊥; Otherwise, set (dk,mk)← KDF(k).
5. Output M ← SKE.Dec(dk, φ) if 1 ← MAC.Ver(mk, c0||c1||c2||c3||φ, σ);

Otherwise output ⊥.

Discussions. The system is based on the selective-tag weak CCA-secure en-
cryption system by Kiltz et al. [17] (KMP system), except with the following
differences. First, the system uses a hash of the concatenation of ciphertext
components c0, c2, c3 as a tag for the tag-based trapdoor function of the KMP
system, while the tag is chosen uniformly random from Zn2 (and then mapped
into a matrix in Zn×n2). Second, k in [17] is the message being encrypted. In our

18

case, the session key is encapsulated in the KEM part. Then, the session key
is used to derive keys for the secret-key encryption and the MAC. In summary,
the “public-key” part of our system is essentially the same as the KMP system,
and hence, its correctness follows directly from the correctness of the KMP en-
cryption system (refer to [17] for details), and the correctness of the secret-key
encryption and the MAC systems.

The security of the above HE system follows from the security of our LWE-
based HE system. There are three differences between these two systems. The
first one is that the LPN-based one has an extra matrix A2 ∈ Zn×m2 , which
is needed for the double trapdoor technique from [17]. Due to the low noise
rate of the private key T, the public matrix A1 = AT is only computationally
indistinguishable from random (based on the Knapsack LPN problem). So, in
the security proof, T cannot be used for responding to decryption queries when
we need to argue the distribution of A is computationally uniform. The matrix
A2 helps to bring in an extra trapdoor, by setting [A|A2] = [A|AT̃ + Ĝ1],
to bridge this gap. The second difference is we add LPN samples c3 for hiding
the session key k, whereas we directly encode the session key into the LWE
“witness” s ∈ Znq . We do this with the LPN-based constriction to follow the
KMP construction [17]. The last one is the construction of noise terms e1, e2.
We follow the KMP system to compute the noise terms e1, e2 from the noise
e0 (whereas all LWE error terms are vectors chosen independently from some
Gaussian distributions). The hardness of the leaky knapsack LPN problem is
used to handle such a correlation in [17], which applies to our case as well.

The security proof of our LPN system is very similar to the security proof
of our LWE-based HE system, thanks to the similarities of Kiltz et al.’s double-
trapdoor and Micciancio-Peikert lattice trapdoor. Our LWE-based system cru-
cially relies on the fact that the LWE trapdoor function’s tag, H(c0), is a secure
commitment of the session key. Similarly, the LPN trapdoor function’s “tag”
H(c0||c2||c3) is also an binding and hiding commitment of the session key: Given
a random A ∈ Zn×m2 , and e← Bermp , cᵀ0 = sᵀA+eᵀ

0 , a noisy random linear code
w.r.t A, determines s w.h.p over the choice of A (see [11], Theorem 2.3). So,

cᵀ3 = sᵀA+eᵀ
3 +kᵀĜ2 with e3 ← Bermp determines k due to the error correction

and unique decoding properties of Ĝ2. The SKE and MAC in the two systems
are used in the same way. Therefore, we can apply exactly the same strategy
that used in proving the LWE-based construction for the LPN-based system.
Due to the space limitation and high similarity with the proof of Theorem 1, we
omit the security proof of the LPN-based HE system.

5 Conclusion

Based on the LWE problem and the low-noise LPN problem, we have presented
two CCA-secure hybrid encryption systems in the standard model. The systems
give the first post-quantum examples of CCA-secure hybrid encryption systems
with non-CCA secure KEMs. Our systems are efficient. For instance, the KEM
part of the LWE-based HE system is simply the lattice trapdoor function from

19

[19], which is supported by efficient implementations (e.g., [5,12]). Our systems
do not fit into the theoretic frameworks established in [1] and [16]. We leave
providing a theoretic framework that explains our constructions as future work.

References

1. Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja
Lange, John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Search-
able encryption revisited: Consistency properties, relation to anonymous IBE, and
extensions. In CRYPTO 2005, 205–222.

2. Masayuki Abe, Rosario Gennaro, and Kaoru Kurosawa. Tag-KEM/DEM: A new
framework for hybrid encryption. Journal of Cryptology, 21(1):97–130, 2008.

3. Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h)ibe in the
standard model. In EUROCRYPT 2010, 553–572.

4. Michael Alekhnovich. More on average case vs approximation complexity. In FOCS
2003. Proceedings., 298–307.

5. Pauline Bert, Pierre-Alain Fouque, Adeline Roux-Langlois, and Mohamed Sabt.
Practical implementation of ring-SIS/LWE based signature and IBE. In PQCrypto
2018, 271–291.

6. Dan Boneh and Jonathan Katz. Improved efficiency for cca-secure cryptosystems
built using identity-based encryption. In CT-RSA 2005, 87–103.

7. Xavier Boyen, Malika Izabachène, and Qinyi Li. A simple and efficient cca-secure
lattice kem in the standard model. In SCN 2020, 321–337.

8. Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In CRYPTO 1998, 13–25.

9. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal
on Computing, 33(1):167–226, 2003.

10. Nico Döttling. Low noise lpn: Kdm secure public key encryption and sample
amplification. In PKC 2015, 604–626.

11. Nico Marcel Döttling. Cryptography based on the Hardness of Decoding. PhD
thesis, Karlsruhe Institute of Technology, 2014.

12. Rachid El Bansarkhani. Lara: a design concept for lattice-based encryption. In
Financial Cryptography and Data Security 2019, 377–395.

13. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. Journal of cryptology, 26(1):80–101, 2013.

14. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lat-
tices and new cryptographic constructions. In STOC 2008, 197–206.

15. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the
fujisaki-okamoto transformation. In TCC 2017, 341–371.

16. Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key
encapsulation. In CRYPTO 2007, 553–571. Springer, 2007.

17. Eike Kiltz, Daniel Masny, and Krzysztof Pietrzak. Simple chosen-ciphertext secu-
rity from low-noise LPN. In PKC 2014, 1–18.

18. Kaoru Kurosawa and Yvo Desmedt. A new paradigm of hybrid encryption scheme.
In CRYPTO, 426–442.

19. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In EUROCRYPT 2012, 700–718.

20

20. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based
on gaussian measures. SIAM J. Comput., 37(1):267–302, April 2007.

21. Chris Peikert. An efficient and parallel gaussian sampler for lattices. In CRYPTO
2010, 80–97.

22. Chris Peikert et al. A decade of lattice cryptography. Foundations and Trends®
in Theoretical Computer Science, 10(4):283–424, 2016.

23. Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In STOC 2005, STOC ’05, 84–93

24. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, 2004.

25. Jiang Zhang, Yu Yu, Shuqin Fan, and Zhenfeng Zhang. Improved lattice-based
cca2-secure pke in the standard model. Cryptology ePrint Archive, Report
2019/149, 2019. https://eprint.iacr.org/2019/149.

https://eprint.iacr.org/2019/149

	Secure Hybrid Encryption In the Standard Model from Hard Learning Problems
	Introduction
	Our Contributions
	Our Approach

	Preliminaries
	Definitions of Cryptographic Primitives

	CCA-Secure Hybrid Encryption from LWE
	Security Proof

	CCA-Secure Hybrid Encryption from Low-Noise LPN
	Conclusion

