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Abstract. We present, to date, the most efficient public-key encap-
sulation mechanism from integer lattices in the standard model. Our
construction achieves adaptive CCA security through a “direct” chosen-
ciphertext security technique without relying on any generic transforma-
tion. The security of our construction is based on the standard learning-
with-errors assumption. The efficiency of our construction is almost the
same as the best known non-adaptive CCA-secure construction.

1 Introduction

Public-key encryption (PKE) is one of the most essential cryptographic primi-
tives that provide data confidentiality. It is the de facto requirement that a PKE
scheme should be CCA-secure, i.e., secure against adaptive chosen-ciphertext
attack for internet applications. In general, the security definitions for PKE in-
volve a game in which the adversary receives a challenge ciphertext ct∗ and tries
to extract non-trivial information about the underlying message m∗. With the
power of adaptive chosen-ciphertext attack, after receiving ct∗, the adversary
can make decryption queries, i.e., adaptively formulating arbitrary ciphertexts
that are different from but possibly related to the challenge ciphertext ct∗, and
obtain the corresponding plaintexts. Such decryption queries could be helpful to
the adversary. For instance, if the adversary can modify the challenge ciphertext
ct∗ to get a valid (i.e., properly decipherable) ciphertext ct 6= ct∗ such that m,
the message that ct encrypts, is related to m∗ in some known way, the adversary
can learn something about m∗. This can be done by sending through ct as a
decryption query and receiving back the m∗-related message m.

For efficiency reasons, the main use of public-key encryption is as a key
encapsulation mechanism (KEM) for exchanging or delivering random session
keys. For example, in the paradigm of “hybrid encryption” [13], a KEM scheme is
used in conjunction with a data encapsulation mechanism (DEM) scheme which
is a basically a symmetric-key cipher: the KEM encrypts a random session key
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and the DEM uses the random session key to encrypt the actual message. It is
known that if both KEM and DEM are CCA-secure, then the hybrid encryption
is CCA-secure [13]. While any PKE scheme is also a KEM scheme (by sampling
then encrypting a random symmetric keys), KEM schemes may be constructed
in more efficient ways.

One of the most common ways of constructing a CCA-secure KEM is to
apply the Fujisaki-Okamoto transformation [16] to a weakly secure PKE/KEM
scheme (e.g., one with chosen-plaintext or CPA security). This approach has pro-
duced many practical KEMs that are CCA-secure in the random oracle model.
Alas, the security argument from this approach is merely heuristic since random
oracles are fictions that cannot be instantiated in the real world. There have
been plentiful works on building efficient PKE/KEM schemes from various of
number-theoretic assumptions, e.g., [13,9,19,17], without using random oracles.
Since these schemes are insecure against quantum adversaries, it is desirable to
find ”quantum-safe” alternatives, e.g., lattice-based constructions.

There are three current approaches for constructing CCA-secure PKE/KEM
from lattices in the standard model, i.e., without using random oracles. The first
one is to apply the BCHK transformation [9] to tag-based encryption (TBE) or
identity-based encryption (IBE). This approach introduces noticeable extra over-
heads in computation and ciphertext size to the underlying TBE/IBE scheme.
The second one is to resort to lossy trapdoor functions (LTFs) [31], as in the
construction from [10]. One of the main issue with this approach is that the
known lattice-based lossy trapdoor functions (e.g., [31,8,5]) require relatively
large parameters and rely on strong lattice assumptions (e.g., LWE with large
(but still polynomial) modulus-to-noise ratio). For example, the recent simple
construction of CCA-secure KEM scheme from [10] uses a stronger LWE assump-
tion than the CCA-secure PKE/KEM obtained by applying BCHK transform
to the identity/tag-based encryption schemes in [1,24]. The third approach is
to instantiate the Naor-Yung paradigm [26,14,33] using a non-interactive zero-
knowledge (NIZK) proof system from lattices, such as [30], but at the moment
this approach is not even remotely practical.

In this paper, we propose a fourth approach, for constructing an efficient
KEM in the standard model from standard lattice assumptions, without appeal-
ing to generic transformation, LTFs or NIZKs.

1.1 Our Approach

At a high level, we adopt the ”direct chosen-ciphertext” approach from [11],
previously used in pairing-based CCA-secure PKE constructions ([11,20]), and
adapt it for use with an TBE/IBE from the learning-with-errors (LWE) problem,
e.g., [1,24]. However, contrarily to pairing-based constructions, the ciphertexts
in lattice-based constructions often contain noise terms. Varying the noise terms
within a small interval results in slightly different ciphertexts which are still valid
and properly decrypt to the same message. This is because those noise terms
are removed by the error-correction mechanism of the decryption algorithms as



3

long as they are ”small” enough. While those noise terms are crucial for security,
they also impede the making of the ciphertexts non-malleable for CCA security.

Let’s take the tag-based PKE scheme from [24] as an example. The ciphertext
of the scheme is

ct0 = stA + et0 ; ct1 = st(A1 +H(id)G) + et1

where matrices A, A1 ∈ Zn×mq are public keys, H is a full-rank difference en-
coding (FRD) which is either injective or with second pre-image resistance, and
G ∈ Zn×mq is a ”gadget” matrix. (We refer to [1] for the details of FRD and to
[24] for the detail of G.) Here we ignore how the actual message is hidden for
simplicity. Notice that this ciphertext essentially contains many LWE samples
and e0, e1 are the LWE noise terms. To prove security [1], the simulator embeds
the challenge tag H(id∗) in A1 such that all ciphertexts with H(id) 6= H(id∗)
can be decrypted, except for the challenge ciphertext whose tag is H(id∗).

Drawing inspiration from [11,20,35], we would replace the identity id by c0

and obtain

ct0 = stA + et0 ; ct1 = st(A1 +H(c0)G) + et1

The tag H(c0) binds s and e0. Given a challenge ciphertext (c∗0, c
∗
1), if the at-

tacker modifies c∗0 or c∗1 by changing s, the tag H(c∗0) changes, and, by the
same argument as in [1], decryption queries on such a modified ciphertext can
be answered. However, this does not make the ciphertext non-malleable because
adding a small error e to e1 results in a ciphertext that decrypts to the same
message with high probability. In fact, a recent lattice-based public-key encryp-
tion scheme [15] does not appear to live up to its claim of CCA security, precisely
for this reason.

Therefore, an additional mechanism is needed in order to prevent the adver-
sary from modifying e1 while keeping the ciphertext valid. Our idea is simple.
We add a hash of e1 to the ciphertext, where hashing is from the short integer
solution (SIS) problem, i.e., c2 = Ue1 where U ∈ Zn×mq is a random matrix. We
also input c2 to the FRD function. This gives a ciphertext

ct0 = stA + et0 ; ct1 = st(A1 +H(c0, c2)G) + et1 ; c2 = Ue1

This provides non-malleability, since modifying e1 into a “small” e′2 without
changing c2 is infeasible, without also producing a solution to the SIS problem
for the random matrix U, given by U(e1 − e′1) = 0.

Lastly, we observe that it is enough to use H(c0, c2), a hash value which can
be as short as the security parameter, to make the ciphertext non-malleable,
instead of c2. Therefore, the final ciphertext of our construction consists of three
elements:

ct0 = stA + et0 ; ct1 = st(A1 +H(c0,Ue1)G) + et1 ; H(c0,Ue1)

which can be of the same size as the non-adaptive CCA1-secure PKE scheme
proposed in [24].
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The security rationale behind this simple idea is the duality between the lat-
tice problems LWE and SIS [22,21]. LWE and SIS are “syntactically equivalent”
in the sense that adding an SIS hash of the noise term of the given LWE samples
is essentially equivalent to providing a redundant description of the LWE prob-
lem, and therefore would not make the LWE problem any significantly easier.

1.2 Comparison and Related Work

Our construction achieves adaptive CCA security (a.k.a. CCA2 security) while
being almost as concise as the best-known non-adaptive CCA1-secure scheme
without random oracles from [24] (dubbed “MP12” henceforward). Public key
size is essentially the same except for one extra public matrix U4. Our cipher-
texts are as short as those of CCA1-secure MP12 under the same message en-
coding, hence shorter than any CCA2-secure ciphertext that could be obtained
by upgrading MP12 through the BCHK transform (yielding “MP12-BCHK”).

In terms of encapsulation (encryption) and decapsulation (decryption) speed,
even though our construction incurs one extra matrix-vector multiplication Ue1,
performance is very comparable to MP12-BCHK with commitments and mes-
sage authentication codes, and better than the MP12-BCHK with one-time sig-
natures (recall that the generic BCHK transform works in either of those ways).
In terms of computational assumptions, we rely on almost the same LWE as-
sumption as the one used in MP12. Crucially, the LWE noise-to-modulus ratio
in both schemes is the same. The only difference is that to prove security, our
construction requires a slightly larger number of LWE samples than needed by
MP12, as these extra LWE samples are used to simulate Ue1. This, however, is
a mostly academic distinction with limited bearing on security, as the hardness
of the LWE problem is not sensitive to the number of samples.

Duong et al. [15] recently proposed a lattice-based PKE scheme with equality
test. However, the scheme is not CCA-secure as the ciphertext is malleable, as
we noted before. It would be interesting to work out if our technique is applicable
to leverage their scheme to achieve CCA security without losing efficiency.

Zhang et al. [35] recently proposed another lattice-based PKE scheme with
claimed CCA security. One similarity with ours is that they require the random
session key to be encoded in the LWE secret; we elected to do the same to make
our construction more compact. It should be noted, however, that the security
proof of [35] seems incomplete, although no attack seems to have been found.

Table 1 below gives a comparison amongst efficient public-key encryption
and encapsulation schemes from lattices in the standard model. To be generous,
we assume that all schemes use the same efficient way of encoding the message
into the normal-form LWE secret vectors, with the caveat that the resulting
secrets post-encoding must retain sufficiently high entropy. (The original MP12
encodes messages into the LWE noise vectors, making its ciphertexts larger.) In

4 A common practical implementation heuristic would be to expand U from a public
seed using a secure pseudorandom number generator; for the security reduction U
needs to be truly random.
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Table 1, the pub, com and tag overheads affecting MP12-MAC, refer to public
parameters, weak commitment and MAC tag borne by the “MAC” version of
the BCHK transform. Likewise, vk and sig in MP12-SIG are the public key and
signature in a strongly unforgeable one-time signature scheme incurred by the
“SIG” version of the BCHK transform. Their size will generally be much larger
than the security parameter, which we conventionally write λ. Both MP12 and
our work have a ciphertext overhead component of size λ: in MP12 it is a random
tag; in our case it is a second-preimage-resistant hash function. Given a modulus
q and dimension n (suitably determined from the security parameter λ), the
hardness of the LWE problem is mostly determined by the noise-to-modulus
ratio parameter α. The smaller α > 0 is, the easier the LWE problem becomes.
As noted above, α is essentially the same across the relevant constructions.

Table 1: Comparison for PKE schemes

param. α |pk| |ct| Security Type

MP12 [24] Õ(1/n) 2(n log q)2 3n log q + λ CCA1 PKE

MP12-MAC [24,9] Õ(1/n) 2(n log q)2 + |pub| 3n log q + |tag|+ |com| CCA PKE

MP12-SIG [24,9] Õ(1/n) 2(n log q)2 3n log q + |sig|+ |vk| CCA PKE

This work Õ(1/n) 3(n log q)2 3n log q + λ CCA KEM

2 Preliminaries

We denote the security parameter by λ. We use bold lowercase letters (e.g. a)
to denote vectors and bold capital letters (e.g. A) to denote matrices. For a
positive integer q ≥ 2, let Zq be the ring of integers modulo q. We denote the
group of n×m matrices in Zq by Zn×mq . Vectors are treated as column vectors.

The transpose of a vector a is denoted by a>. For A ∈ Zn×mq and B ∈ Zn×m′

q ,

let [A|B] ∈ Zn×(m+m′)
q be the concatenation of A and B. We denote by ‖x‖ the

`2 norm of a vector x. ‖X‖ denotes the `2 length of the longest column of R. Let
x = (x1, x2, ..., xn) be s vector over Znq , ‖x‖ = max(|x1|, |x2|, ..., |xn|). Let X and
Y be two random variables taking values in some finite set Ω. Their statistical
distance, denoted ∆(X,Y ), is ∆(X,Y ) = 1

2

∑
s∈Ω |Pr[X = s]− Pr[Y = s]|.

The following lemma will be useful in our security proofs.

Lemma 1 (Lemma 1 of [34]). Let X1, X2, B be events defined in some
probability distribution, and suppose that X1 ∧¬B ⇔ X2 ∧¬B. Then |Pr[X1]−
Pr[X2]| ≤ Pr[B].

2.1 Lattices, Discrete Gaussians, and Trapdoors

Definition 1 (Random Integer Lattice). For a positive integer q (later to
be prime), a matrix A ∈ Zn×mq and a vector u ∈ Znq , define the m-dimensional
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full-rank integer lattices

Λ(A) = {y ∈ Zm s.t. ∃ x ∈ Znq where xtA = y (mod q)}

Λ⊥(A) := {y ∈ Zm s.t. Ay = 0 (mod q)}

In fact, up to a scaling factor of q, Λ(A) and Λ⊥(A) are dual to each other.

Definition 2. Let m ∈ Z>0 be a positive integer and Λ ⊂ Zm. For any real
vector c ∈ Rm and positive parameter σ ∈ R>0, ∀y ∈ Λ, the discrete Gaus-
sian distribution over Λ with center c and parameter σ is denoted by DΛ,σ,c =
ρσ,c(y)/ρσ,c(Λ) where ρσ,c(x) = exp

(
−π‖x− c‖2/σ2

)
is the Gaussian function

and ρσ,c(Λ) =
∑

x∈Λ ρσ,c(x). For notational convenience, ρσ,0 and DΛ,σ,0 are
abbreviated as ρσ and DΛ,σ.

Lemma 2 (special case of Lemma 4.4 of [25]). For x← DZm,s, Pr[‖x‖ >
s
√
m] < 1− 2−Ω(m).

Lemma 3 (Proposition 5.1 of [18]). Let q ≥ 2. For all but a 2q−n fraction
of all A ∈ Zn×mq and for any s ≥ ω(

√
log n), the distribution of Ae mod q is

statistically close to uniform over Znq , where e ∼ DZm,s.

We will use the super-increasing vector gt = (1, 2, 4, . . . , 2k−1), for k =
dlog2 qe and extend it to form a “gadget” matrix G = diag(gt, . . . ,gt) ∈ Zn×nkq

as in [24]. Here we use a base 2 but other choices of base can be used. We for-
mulate the following lemma which is directly derived from the Theorem 4.1 and
Theorem 5.4 and of [24].

Lemma 4. Let w = ndlog qe. Let F = [A|AR + HG] where R ∈ Zm×w, H ∈
Zn×nq is invertible in Zq, and G ∈ Zn×wq is the gadget matrix. Given bt = stF+et

where et = [et0|et1], there exists a p.p.t algorithm Invert(R,F,b) that outputs s
and e when ‖et1 − et0R‖∞ < q/4.

2.2 Hardness Assumptions

Definition 3 (Short-Integer-Solution Problem). Let λ be the security pa-
rameter, n = n(λ), m = m(λ), q = q(λ) and β = β(λ). The advantage of an

algorithm A that solves the problem SISn,m,q,β, denoted by Adv
SISn,m,q,β
A (λ), is de-

fined as Pr[A(A, β)→ e 6= 0 : Ae = 0 mod q ∧ ‖e‖ ≤ β] where A← Zn×mq .

We say SISn,m,q,β is hard if for all p.p.t algorithms A, Adv
SISn,m,q,β
A (λ) ≤ negl(λ).

A series of works show that solving the SISn,m,q,β problem is as hard as approxi-
mating classic lattice problems, e.g., GapSVP and SIVP, for some approximation
factor γ = β · poly(n). We refer to [29] and the references therein for further
details.
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Definition 4 (Learning-With-Errors Problem). Let λ be the security pa-
rameter, n = n(λ), m = m(λ), q = q(λ) and an error distribution χ = χ(n) over
Zq. The advantage of a p.p.t adversary A for the learning with errors problem

LWEn,m,q,χ, denoted by Adv
LWEn,m,q,χ
A (λ), is defined as∣∣Pr[A(A, stA + et) = 1]− Pr[A(A,bt) = 1]

∣∣
where A ← Zn×mq , s ← Znq , e ← χm. The LWEn,m,q,χ problem is hard if

Adv
LWEn,m,q,χ
A (λ) ≤ negl(λ) for all p.p.t adversary A.

Regev [32] shows that, for αq >
√
n, LWE is as hard as approximating some

traditional worst-case lattice problems, e.g., SIVP. We refer to [32,29] for details.
We prove the CCA security of our KEM scheme based on a variant of the

LWE problem with a uniformly distributed SIS “hint”, that we call the SISnLWE
problem (“n” stands for “normal form”). It can also be seen as another variant
of the Extended LWE problem [27,4,12,3,6] which has been studied in several
different contexts. In Section 4.1, we prove that SISnLWE problem is hard as the
LWE problem.

Definition 5 (Normal-form LWE with SIS hint). Let λ be the security
parameter, n = n(λ), m = m(λ), q = q(λ) and an error distribution χ = χ(n)
over Zq. The advantage of a p.p.t. adversary A for the learning with errors

problem SISnLWEn,m,q,χ, denoted by Adv
SISnLWEn,m,q,χ
A (λ), is defined as∣∣Pr[A(A, stA + et,Ze,Z) = 1]− Pr[A(A,bt,Ze,Z) = 1]

∣∣
where A,Z ← Zn×mq , s ← χn, e ← χm. The SISnLWEn,m,q,χ problem is hard if

Adv
SISnLWEn,m,q,χ
A (λ) ≤ negl(λ) for all p.p.t adversary A.

We note that unlike the Extended LWE problems studied in [4,3,6] where Z is
of low-norm, here Z is chosen uniformly at random which makes arguing the
hardness of this new SISnLWE problem a lot easier.

Definition 6 (Second Pre-Image Collision Resistance). Let λ be the se-
curity parameter. Let H : {0, 1}∗ → {0, 1}` be a hash function. We say that H
is second-pre-image resistant if for all p.p.t algorithms A, the advantage,

AdvcollA (λ) = Pr[A(H,x)→ x′ 6= x : H(x) = H(x′)]

where x← {0, 1}∗ and x′ ∈ {0, 1}∗ is negligible in λ.

We note that the notion of second pre-image collision resistance (or just second
pre-image resistance) is weaker than the notion of collision resistance.

2.3 Public-Key Encapsulation

A public-key encapsulation (KEM) scheme Π = (KeyGen,Enc,Dec) with key
space Kλ consists of three polynomial-time algorithms. The key generation algo-
rithm KeyGen(1λ) generates a public key pk and a private key sk. The randomised
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key encapsulation algorithm Enc(pk) generates a session key K ∈ Kλ and a ci-
phertext ct. The decapsulation algorithm Dec(pk, sk, ct) returns the session key
K or the error symbol ⊥. The correctness of a KEM scheme requires that for all
λ ∈ N, and all (K, ct)← Enc(pk),

Pr[Dec(pk, sk, ct) = K] ≥ 1− negl(λ)

where the probability is taken over the random coins of KeyGen and Enc.
We recall the adaptive chosen-ciphertext security of KEM. The IND-CCA

security of a KEM scheme Π with session key space Kλ is defined by the following
security game. The challenger C runs (pk, sk)← KeyGen(1λ), chooses a random
coin µ ←$ {0, 1}, samples K∗0 ←$ Kλ, and computes (K∗1 , ct

∗) ← Enc(pk).
Then C passes (pk,K∗µ, ct

∗) through to the adversary. The adversary launches
adaptive chosen-ciphertext attacks: It repeatedly chooses any ciphertext ct 6= ct∗

and sends it over to C and C returns Dec(pk, sk, ct). Finally, A outputs µ′ and
wins if µ′ = µ. We define A’s advantage in the above security game as

Advind−ccaA,Π (λ) = |Pr[µ′ = µ]− 1/2|.

We say Π is IND-CCA-secure if Advind−ccaA,Π (λ) is negligible in λ.

3 CCA-Secure KEM

We use the SISnLWEn,m,q,DZ,αq problem for security where q is prime, DZ,αq de-
notes the discrete Gaussian distribution with parameter αq, and m ≥ 2ndlog qe.
The following specifications are shared across instances of our scheme.

1. A full-rank difference encoding [1] FRD : Znq → GL(n, q) where GL(n, q)
denotes the set of modulo-q invertible matrices in Zn×nq .

2. G ∈ Zn×wq for w = ndlog qe is the gadget matrix originally defined in [24].

3. The LWE error rate α such that 1/α = 8 ·O(w) · ω(
√

log n).
4. A second-pre-image resistant hash function H : {0, 1}∗ → {0, 1}λ \ {0λ}

where 0λ is the length-λ string with all 0’s. W.l.o.g, we assume there is an
efficient injective encoding that encodes the outputs of H to elements in Znq .

– KeyGen(1λ) The key generation algorithm does:
1. Sample A← Zn×mq , R← Dm×w

Z,ω(
√

logn)
and set A1 ← AR.

2. Sample U← Zn×wq .
3. Return the public key pk = (A,A1,U)

– Enc(pk) The key encapsulation algorithm does:
1. Sample a session key k← {0, 1}n, s̄← Znq ; Set s← kbq/2c+ s̄.

2. Sample e0 ← Dm
Z,αq, e1 ← Dw

Z,s where s2 = (‖e0‖2+m(αq)2)·ω(
√

log n)2.

3. Compute ct0 ← stA + et0, and c2 ← Ue1.
4. Compute ct1 ← st(A1 + FRD(t)G) + et1 where t = H(c0, c2) is encoded

as an element in Znq before being sent to FRD(·).
5. Return the ciphertext ct = (c0, c1, t) and session key k.
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– Dec(pk, sk, ct) The decapsulation algorithm does:
1. Parse ct = (c0, c1, t); Output ⊥ if ct doesn’t parse.
2. Call Invert(R,F, [ct0|ct1]) where F = [A|A1 +FRD(t)G] to get e0 and e1.
3. If ‖e0‖ > αq

√
m or ‖e1‖ > αq

√
2mw · ω(

√
log n), output ⊥.

4. If H(c0,Ue1) 6= t, output ⊥.
5. Let s[i] be the i-th coordinate of s; Set k[i] ← 0 if s[i] is closer to 0 or

k[i]← 1 if s[i] is closer to q/2.
6. Output k if ‖s− k‖ ≤ αq

√
n; Otherwise output ⊥.

The ciphertext consists of three elements, i.e., c0 ∈ Zmq , c1 ∈ Zwq , and t ∈ {0, 1}λ.

Decapsulation correctness. It is sufficient to show that for a correctly generated
ciphertext, the algorithm Invert(R,F, [ct0|ct1]) will output s with overwhelming
probability. Let et = [et0|et1]. By Lemma 2, we have ‖e1‖ ≤ s

√
w, ‖e0‖ ≤ αq

√
m,

and ‖R‖ ≤
√
m · ω(

√
log n) except with negligible probability. By Lemma 4,∥∥et1 − et0R

∥∥
∞ ≤

∥∥et1 − et0R
∥∥ ≤ ∥∥et1∥∥+

∥∥et0R∥∥
≤ 2αq ·O(

√
w) · ω(

√
log n) ·

√
3w

≤ 2αq ·O(w) · ω(
√

log n)

≤ q/4

holds with overwhelming probability. So Invert(R,F, [ct0|ct1]) correctly recovers e
and s with overwhelming probability. Finally, since s̄ ∼ Dn

Z,αq, we have ‖s̄‖∞ ≤
q/4 (i.e., |s̄[i]| < q/4 for all i) with overwhelming probability. So, k can be
recovered from s = kbq/2c+ s̄ with overwhelming probability.

4 Security Analysis

The security of our KEM scheme is based on a variant of LWE problem we call
SISnLWE (normal-form LWE with a SIS hint). In this section, we first show that
SISnLWE is as hard as the standard LWE problem. Then we give the security
proof of the KEM scheme.

4.1 The SISnLWE Problem

Let q, n, m, m′ ≥ 2 be integers where m = O(n log q) and m′ = m + n. Let χ
be a noise distribution on Zq. The SISnLWEn,m,q,χ problem gives as challenge

(A,bt, z = Ze mod q,Z)

where A ← Zn×mq , b ∈ Zmq , Z ← Zn×mq and e ← χm. It asks to tell if there
exists a vector s ∼ χn such that bt = stA + et (mod q) or if b ∈ Znq is random.

Instead of reducing the problem to standard LWE problem directly, we re-
duce the SISnLWE problem to the equivalent knapsack form of LWE, defined by
Micciancio and Mol [23]. The Knapsack LWE problem, KLWEm′−n,m′,q,χ, gives
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(B, c) where B ← Z(m′−n)×m′

q , c ∈ Zm′−n
q and asks to determine if c = Bx

(mod q) for some x ← χm
′

or if c is uniformly random. The hardness of the
knapsack-form LWE problem is in turn implied by the hardness of the standard
LWE problem. This is shown by Micciancio and Mol (Lemma 10, [23]). We also
note that the knapsack-form LWE problem has been used to prove the hardness
of a version of the Extended LWE problem in [4].

We first define an intermediate problem SISLWEn,m,q,χ (LWE with a SIS
hint): Given (A,bt,Ze,Z) where A ∈ Zn×mq , b ∈ Zmq , Z ∈ Zn×mq and e ← χm,
decide if bt = stA + et for some s ← Znq or if b is random. Note the only
difference between the SISnLWEn,m,q,χ problem and the SISLWEn,m,q,χ problem
is that in the former one s are sampled from the noise distribution χn and the
in the latter one s← Znq .

Lemma 5. SISLWEn,q,m′,χ is no easier than KLWEm′−n,q,m′,χ.

Proof. We show how to turn a KLWEm′−n,q,m′,χ problem instance (B, c) ∈

Z(m′−n)×m′

q × Zm′−n
q to an SISLWEn,m′,q,χ problem instance. Let B =

[
H
Z

]
and c =

[
h
z

]
where H ∈ Z(m′−2n)×m′

q , Z ∈ Zn×m′

q , h ∈ Zm′−2n
q , and z ∈ Znq .

The transformation directly follows from the proof of Lemma 4.9, [23]. Since H
is random, the columns of H generates the set Zm′−2n

q except with all but neg-

ligible probability. Using linear algebra, we first find a matrix A′ ∈ Zn×m′

q such

that the rows of A′ generates the set S = {x ∈ Zm′

q : Hx = 0 (mod q)}. We
randomise A′ by left-multiplying it by a unimodular matrix U ∈ Zn×nq to get

A ∈ Zn×m′

q . We set bt = s̃tA+rt where s̃← Znq and r ∈ Zm′

q be an arbitrary so-
lution to Hr = h (mod q). Finally, (A,b, z,Z) is returned as an SISLWEn,m′,q,χ

challenge.
We analyse the transformation. If Hx = h and Zx = z, we can write r = r′+x

where Hr′ = 0 (mod q). As the row of A generates S, we have r′ = Atv for
some v ∈ Znq . This shows that bt = stA + xt for some random s (= s̃ + v)
and therefore (A,bt, z = Zx,Z) is distributed as SISLWE samples. On the other
hand, if c is random, bt = s̃tA + rt is uniformly random on Znq . So, in the tuple

(A,bt, z,Z), b is uniformly random and there exists an (unknown) e ∼ χm′
such

that z = Ze. ut

Lemma 6. SISnLWEn,q,m,χ is no easier than SISLWEn,m′,q,χ.

Proof. We essentially apply the proof of [7], Lemma 2. Let (Ā, b̄, z̄, Z̄) be an
instance of SISLWEn,m′,q,χ where m′ = n + m. Without loss of generality, let
Ā = [Ā1|Ā2], b̄t = [b̄t1|b̄t2] where Ā1 ∈ Zn×nq is invertible over Zq (recall the

random matrices Ā and Z̄ have m′ = O(n log q) columns so with overwhelming
probability they have n linearly independent columns), b̄1 ∈ Znq . We first set

A← −Ā−1
1 Ā2 and bt ← b̄t2 + b̄t1A
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Let Z̄ = [Z̄1|Z̄2] where Z̄1 ∈ Zn×nq is invertible modulus q. We set

z = Sz̄ and Z = SZ̄2

where S ∈ Zn×nq such that SZ̄1 = 0 (mod q) (S can be constructed by left-

multiplying a random Zn×nq -matrix to the solution of XZ̄1 = 0 mod q). Then
(A,b, z,Z) is returned as an SISnLWEn,m,q,χ problem instance. We analyse the

transformation. If there exists s← Znq , x← χm
′

where xt = [xt1|xt2] and x1 ← χn

such that
b̄t = st[Ā1|Ā2] + [xt1|xt2] and z̄ = Z̄1x1 + Z̄2x2.

The transformation gives us

bt = xt1A + xt2 and z = Zx2

where Z is uniformly random (because Z̄ is uniformly random). So (A,bt, z,Z)
has pseudorandom distribution. If b̄ and z̄ are uniformly random, then b and z
are uniformly random. So (A,bt, z,Z) has random distribution. ut

4.2 Security Games

In order to prove security, we proceed by games. For i = 0, 1, 2, 3, we denote
by Gi the i-th security game and Si the event that the adversary A wins the
security game Gi, e.g., by outputting µ′ = µ.

G0: The first game is the real IND-CCA security game. Let k0,k1 ← {0, 1}n
and let s = k1 · bq/2c+ s̄. The adversary A gets pk = (A,A1,U), the hash
function H, and a challenge ciphertext ct∗ = (c∗0, c

∗
1, t
∗), where

c∗0 = stA + et0, c∗1 = st(A1 + FRD(t∗)G) + et1, t∗ = H(c∗0,Ue1)

and a session key kµ where µ ← {0, 1}. The simulator B implements the
decapsulation oracle by following the real decapsulation algorithm. A even-
tually outputs a bit µ′ and it wins if µ′ = µ.

G1: Game G1 is identical to G0 except that the decapsulation oracle rejects any
ciphertext ct = (c0, c1, t) where c0 6= c∗0 but t = t∗.

G2: Game G2 is identical to G1 except that the decapsulation oracle rejects any
ciphertext ct = (c0, c1, t) where c0 = c∗0 and c1 6= c∗1.

G3: Game G3 is identical to G2 except that the public key and the challenge
ciphertext are simulated as follows.
1. Choose a hash function H : {0, 1}∗ → {0, 1}λ \ {0λ}.
2. Sample A← Zn×mq ;

3. Sample Z← Zn×wq , Rt ← Dw×m
Z,ω(
√

logn)
. If R has rank < w, the simulator

aborts the simulation and exits without proceeding to the next step.
4. Using linear algebra to find (Rt)−1 ∈ Zm×w such that Rt · (Rt)−1 = Iw;

Set U← Z(Rt)−1.
5. Sample e0 ← Dm

Z,αq, v← Dw
Z,αq

√
m·ω(

√
logn)

; Set et1 ← et0R + vt.
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6. Sample the session key k1 ← {0, 1}n, s̄← Dn
Z,αq; Set s← k1 · bq/2c+ s̄.

7. Compute c∗0
t ← stA + et0 and c∗2 ← Ze0 + Uv (which equals to Ue1).

8. Set A1 ← AR−FRD(t∗)G and c∗1
t ← c∗0

tR + vt where t∗ ← H(c∗0, c
∗
2).

9. Return pk = (A,A1,U), public parameter H, sk = R, and ct∗ =
(c∗0, c

∗
1, t
∗)

G4: Game G4 is the identical to G3 except that both session keys k∗0 and k∗1 are
sampled uniformly at random and, in particular, independently of the chal-
lenge ciphertext. We note that in this game, the adversary has no advantage
in winning the game.

4.3 Security Proofs

Theorem 1. Under the assumptions that H be second-pre-image resistant, the
problem SISn,q,β be hard, and the problem SISnLWEn,m,q,DZ,αq be hard, the KEM
scheme presented in section 3 is IND-CCA secure. In particular, we have

Advind−ccaA,Π (λ) ≤ AdvcollB1,H(λ) + Adv
SISn,q,β
B2

(λ) + Adv
SISnLWEn,m,q,DZ,αq
B3

(λ) + negl(λ)

for some algorithms B1 B2 and B3, and negl(λ) is negligible in λ.

Proof. We establish the theorem by showing that the neighbour games are indis-
tinguishable (either computationally or statistically) based on our assumptions.

Lemma 7. G0 and G1 are computationally indistinguishable if H : {0, 1} →
{0, 1}λ \ {0λ} is second-pre-image collision resistant. In particular,

|Pr[S0]− Pr[S1]| ≤ AdvcollB1,H(λ) (1)

for some algorithm B1.

Proof. First of all, we have, by definition,

Pr[S0] = Pr[µ = µ′] = 1/2 · Advind−ccaA,Π (λ) + 1/2 (2)

Let E1 be the event that the adversary A issues a valid ciphertext (i.e., which can
be decrypted properly) ct = (c0, c1, t) where c0 6= c∗0 but t = t∗. We note thatG0

is identical to G1 unless E1 happens. So by Lemma 1 we have |Pr[S0]−Pr[S1]| ≤
Pr[E1]. One the other hand, it is readily seen that E1 implies a collision of H
under a given pre-image c∗0. Therefore, |Pr[S0]− Pr[S1]| ≤ AdvcollB,H(λ).

Lemma 8. G1 and G2 are computationally indistinguishable if SISn,q,β problem
is hard. In particular, for some algorithm B2

|Pr[S1]− Pr[S2]| ≤ Adv
SISn,q,β
B2

(λ) (3)

where β = 2s
√
w for s ≤

√
6w · αq · ω(

√
log n).
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Proof. Recall that in G2, the simulator B runs the real KeyGen(1λ) to generate
pk = (A,A1,U) and private key R as well as the public hash function H. It
also computes a real challenge ciphertext ct∗ = (c∗0, c

∗
1, t
∗) where

c∗0
t = st1A + et0, c∗1

t = st1(A1 + FRD(t∗)G) + et1, t∗ = H(c∗0,Ue1)

Let E2 be the event that the adversary issues a valid ciphertext (i.e., which
can be decrypted properly to a valid session key) ct = (c0, c1, t) where c0 = c∗0
(thus t = t∗) and c1 6= c∗1. Since G1 and G2 are identical unless E2 happens, by
Lemma 1 we have |Pr[S1]− Pr[S2]| ≤ Pr[E2].

Next we show Pr[E2] is bounded by the probability of successfully solving
the SIS problem. A SIS adversary B2 receives its challenge, a random matrix
U ∈ Zn×wq . It generates A, A1, H exactly as in the algorithm KeyGen, and
publishes pk = (A,A1,U, H). It is easy to see that pk has the correct distribu-
tion. B2 simulates the security game G1, interrupting the simulation whenever
E2 happens and using the corresponding query to solve its SIS instance.

Assume the decapsulation query is ct = (c∗0, c1, t
∗) where ct1 = s̃t(A1 +

FRD(t∗)G) + ẽt1. We must have Uẽ = Ue1. B uses its trapdoor R to recover
ẽ1, and outputs e ← ẽ1 − e1. Now we argue that e is indeed a correct solution
to the SIS problem instance. First, we must have ẽ1 6= e1 with overwhelming
probability. Otherwise, since c0 = c∗0 and t = t∗, we have to have c1 = c∗1, and
thus the decapsulation query is the challenge ciphertext. This shows that e 6= 0.
Second, since ct is a valid ciphertext, ‖ē1‖ ≤ s

√
w by construction. To bound

the norm of e, we have

‖e‖ ≤ 2s
√
w = 2

√
(‖e0‖2 +m(αq)2) · ω(

√
log n)2 ·

√
w

≤
√

6w · αq · ω(
√

log n)

as required. This shows that Pr[E2] ≤ Adv
SISn,q,β
B2

(λ).

Lemma 9. There exist a negligible function negl(λ) such that

|Pr[S2]− Pr[S3]| ≤ negl(λ) (4)

Proof. First of all, let Abort be the event that the simulation aborts due to the
fact that the matrix R’s rows (i.e. Rt’s columns) are not all linearly indepen-
dent. Recall that m ≥ 2w = 2n log q which means R has (at least) m = 2w
independent samples from DZw,ω(

√
logn). As shown in [2], the matrix R has rank

w, i.e., the event Abort happens with a negligible probability.
In the following, we show that the public key and the challenge ciphertext

simulated in G3 is indistinguishable from those output in G2 from the adversary’s
view, conditioned on that Abort did not happen.

For pk in G3, we can see that A and H are correctly distributed. Since
Rt ← Dw×m

Z,ω(
√

logn)
(i.e., the coordinates of R are independent and each of them

has distribution DZ,ω(
√

logn)), by Lemma 3, A1 generated in G3 (i.e., AR −
FRD(t∗)G) and G2 (i.e., AR) are statistically close (both are statistically close
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to the uniform distribution over Zn×mq ). Moreover, by the fact that Z ∈ Zn×mq

is uniformly random, we have U = Z(Rt)−1 is also uniformly random as in G2.
Now we look at the challenge ciphertext. First of all, c∗0 is correctly dis-

tributed. Second, recall et1 ← et0R + vt. By adapting Theorem 3.1 of [28] and
Corollary 3.10 of [32], conditioned on A1 and U, e1 has a distribution that is

statistically close to Dw
Z,s, where s2 = (‖e0‖2 +m(αq)2) · ω(

√
log n)2. So, e1 has

the required distribution except with negligible probability. Moreover,

c∗1
t = c∗0

tR + vt = (stA + et0)R + vt

= st(A1 + FRD(t∗)G) + (et0R + vt)

= st(A1 + FRD(t∗)G) + et1

and

t∗ = H(c∗0,Ze0 + Uv) = H(c∗0,URte0 + Uv) = H(c∗0,Ue1)

which shows that c∗1 and t∗ are also correctly distributed.
Finally, notice that the simulator in G3 cannot decapsulate any ciphertext

ct = (c0, c1, t) where c0 = c∗0 and t = t∗. However, such a decapsulation query
has already been excluded in G2. Summing up, G3 is distributed the same as
G2 except with negligible statistical error negl(λ). So, we have equation (4).

Lemma 10. G3 and G4 are computationally indistinguishable if SISnLWEn,m,q,DZ,αq

is hard. In particular,

|Pr[S3]− Pr[S4]| ≤ Adv
SISnLWEn,m,q,DZ,αq
B3

(λ) (5)

where χ = DZ,αq for some algorithm B3. Moreover the adversary has no advan-
tage in G4, i.e.,

Pr[S4] = 1/2 (6)

Proof. We show a simulator that simulates S either G3 or G4 from an instance
of SISnLWEn,m,q,DZ,αq problem. S receives its challenge (A,bt, z = Ze0,Z) for
some e0 ∼ χm and needs to decide if there are vectors s̄ ← Dn

Z,αq such that

bt = s̄tA + et0. S does the following to prepare pk, H and ct∗.

1. Set a hash function H : {0, 1}∗ → {0, 1}λ \ {0λ}.
2. Set A from the challenge.
3. Sample Rt ← Dw×m

Z,ω(
√

logn)
. If the columns of R are not linearly independent,

the simulator aborts the simulation and exits without going to the next step.
4. Use linear algebra to find (Rt)−1 ∈ Zm×w such that Rt · (Rt)−1 = Iw; Set

U← Z(Rt)−1 ∈ Zn×wq .

5. Sample k0,k1 ← {0, 1}n; Set c∗0
t ← (k1bq/2c)tA + bt.

6. Sample v← Dw
Z,αq

√
m·ω(

√
logn)

; Set c∗1
t ← c∗0

tR + vt.

7. Set t∗ = H(c∗0, z + Uv) and A1 ← AR − FRD(t∗)G where z ∈ Znq is from
the challenge.
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8. Return pk = (A,A1,U, H), ct∗ = (c∗0, c
∗
1, t
∗), and kµ for µ← {0, 1}

9. Keep R for further use (i.e., implementing the decapsulation oracle).

Firstly, we can see that both games abort with the same probability. Con-
ditioned on that both games do not abort, it is easy to see that pk has the
correct distribution. Secondly, the trapdoor R enables answering all kinds of
decapsulation queries except the ones that have already been excluded in G1

and G2.
We argue that depending on the SISnLWEn,m,q,DZ,αq challenge, the simu-

lator S either simulates G4 or G5. In the first case where b and z from the
SISnLWEn,m,q,DZ,αq challenge is random, c∗0 statistically hides k1 meaning that
the challenge session k∗µ is anyway independent from ct∗. Therefore, S is simu-
lating G4. In the other case where bt = s̄tA+et0, the challenge ciphertext follows
the correct distribution of G3. To see this, we have

c∗0 = (k1bq/2c)tA + bt = (k1bq/2c+ s̄)tA + et0 = stA + et0

and

t∗ = H(c∗0, z + Uv) = H(c∗0,Ze0 + Uv) = H(c∗0,Ue1)

and

c∗1
t = c∗0

tR + vt = (stA + et0)R + vt

= st(A1 + FRD(t∗)G) + (et0R + vt)

= st(A1 + FRD(t∗)G) + et1

This shows that S is simulating G3. So we have an efficient distinguisher of G3

and G4 which in turn leads to an efficient algorithm that solves the problem
SISLWEn,m,q,χ,DZ,αq . Equation (5) follows.

Finally, we note that in G4, both k0 and k1 are independent of the challenge
ciphertext ct∗ and the adversary has no advantage in winning the security game.
So, we have equation (6)

We conclude the proof by combing inequalities (1), (2), (3), (4), (5), and (6). ut
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